
Future Generation Computer Systems 109 (2020) 158–171

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

MobiGyges: Amobile hidden volume for preventing data loss,
improving storage utilization, and avoiding device reboot
Wendi Feng a, Chuanchang Liu a,∗, Zehua Guo b,c, Thar Baker d, Gang Wang b,c,
Meng Wang a, Bo Cheng a, Junliang Chen a

a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, 10 Xitucheng
RD, 100876, Beijing, China
b Beijing Institute of Technology, 5 Zhongguancun ST South, 100081, Beijing, China
c University of Minnesota Twin Cities, 117 Pleasant ST, 55455, Minneapolis, USA
d Liverpool John Moores University, James Parson Building, Liverpool, L3 3AF, UK

a r t i c l e i n f o

Article history:
Received 24 September 2019
Received in revised form 26 February 2020
Accepted 25 March 2020
Available online 31 March 2020

Keywords:
Data loss preventing
Hidden volume
Improving storage utilization
Sensitive data protection
Avoiding reboot

a b s t r a c t

Sensitive data protection is essential for mobile users. Plausibly Deniable Encryption (PDE) systems
provide an effective manner to protect sensitive data by hiding them on the device. However, existing
PDE systems can lose data due to overriding the hidden volume, waste physical storage owing to
the ‘‘reserved area’’ for avoiding data loss, and require device reboot when using the hidden volume.
This paper presents MobiGyges, a hidden volume-based mobile PDE system, to fill the gap. MobiGyges
addresses the problem of data loss by restricting each storage block used only by one volume, and
it improves storage utilization by eliminating the ‘‘reserved area’’. MobiGyges also avoids device
reboot by mounting the hidden volume dynamically on-demand with the Dynamic Mounting service.
Moreover, we identify two novel PDE oriented attacks, the capacity comparison attack and the fill-to-
full attack. MobiGyges can defend against them by jointly leveraging the Shrunk U-disk method and
multi-level deniability. We implement the MobiGyges proof-of-concept system on a real mobile phone
Google Nexus 6P with LineageOS 13. Experimental results show that MobiGyges prevents data loss,
avoids device reboot, improves storage utilization by over 30% with acceptable performance overhead
compared with current solutions.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Mobile devices (e.g., smartphones) have become prevalent in
recent years, especially in the era of 5G and the Internet of Things
(IoT) [1]. Hence, protecting private and sensitive data on mobile
devices is important to users [2,3]. One solution is to use Full Disk
Encryption (FDE) [4]. FDE employs an encrypting key to encrypt
user data before storing it on a device and decrypt the data before
applications using it [5]. Nonetheless, FDE is not secure because
sensitive data can be compromised when the encryption key is
exposed.

Recent works [6–10] have proposed Plausibly Deniable En-
cryption (PDE) to enhance security. PDE is a data protection
paradigm that protects sensitive data on both stationary systems
and mobile systems by providing deniability for sensitive data. De-
niability means that sensitive data owners can deny the existence
of the data. Modern PDE systems use the hidden volume mecha-
nism to implement the deniability. The hidden volume based PDE

∗ Corresponding author.
E-mail address: lcc3265@bupt.edu.cn (C. Liu).

system stores sensitive data on the hidden volume, yet the hidden
volume itself is concealed inside the device. Logically, the storage
space on the hidden volume-based PDE systems can be divided
into hidden volumes and an outer volume. The outer volume is
visible to all users for daily purposes and is used automatically as
the system starts up, while hidden volumes are concealed in the
device and store the sensitive data. Such hidden volume-based
solutions have the following limitations:

• Data loss. Hidden volumes are concealed inside the outer
volume [7–11], but the outer volume does not know the
existence of hidden volumes. It is likely to write data on
the storage blocks that are occupied by hidden volumes,
and sensitive data stored on the hidden volume will be lost.
Fig. 1 shows an example of data overriding between the
outer volume and the hidden volume. In the figure, the outer
volume considers all the storage space (red space) to be
usable. When the outer volume writes data on the space of
the hidden volume (purple space), the data on the hidden
volume will be lost.
• Storage waste. Studies [7–10,12] attempt to solve the data

loss problem by placing the hidden volume into a ‘‘reserved

https://doi.org/10.1016/j.future.2020.03.048
0167-739X/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2020.03.048
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.03.048&domain=pdf
mailto:lcc3265@bupt.edu.cn
https://doi.org/10.1016/j.future.2020.03.048


W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171 159

Fig. 1. Data loss caused by data override. The outer volume writes data on
hidden volume occupied blocks.

area’’, so the outer volume will not write data to that area.
The size of the ‘‘reserved area’’ is bigger than the capacity
of the hidden volume. As depicted in Fig. 2a, in existing
works, the right part (green blocks plus the blue block) of
the physical volume is reserved for the hidden volume. Since
the capacity of the hidden volume (the blue block) is much
smaller than that of the ‘‘reserved area’’, the hidden volume
can ‘‘float’’ inside the ‘‘reserved area’’. Hence, the exact
starting position of the hidden volume can be arbitrary, and
hidden volumes are thus protected. However, this mecha-
nism could waste a large amount of storage space (green
blocks). We find in these solutions [7–9] that, up to 45%1
of the total storage space is wasted, which is considerably
large for resource-limited mobile devices.
• Device reboot. State-of-the-art proposals have engaged two

modes in their system, namely, the normal mode and the PDE
mode [7–11]. The normal mode uses the outer volume while
the PDE mode uses the hidden volume, respectively. When
users want to use the hidden volume, they have to use the
PDE mode. However, a device reboot is required to switch
between modes. Rebooting the device to use the PDE mode
wastes time and is not convenient for users especially those
who want to use the hidden volume urgently.

In addition to these drawbacks, we identify two possible PDE
oriented attacks (detailed in Section 4) that might compromise
the sensitive data, and current solutions fail to defend.

• Capacity comparison attack. The attacker may discover the
hidden volume by comparing the capacity of the outer vol-
ume and the hidden volume. If their capacities are different,
the attacker may doubt if the device is particularly designed,
which is prone to expose the hidden volume and hence
compromises the sensitive data. For example, a 32GB device
uses 5GB for the hidden volume, so the capacity of the
outer volume is 27GB. The attacker can doubt about the 5GB
capacity difference, and conduct further investigation.
• Fill-to-full attack. If the attacker identifies the potential

existence of the hidden volume, he/she may conduct the
fill-to-full attack to explore the real capacity of the outer
volume by writing arbitrary data to the outer volume and
filling it until full. After filling the outer volume, the attacker
gets the audited information and conducts the capacity com-
parison attack. If the real capacity is different from that of
the physical disk, the hidden volume will be compromised.

Existing solutions cannot solve the three problems simultane-
ously, and they cannot defend against the two attacks. To this

1 Including storage space taken up by the structure of a file system. The
calculation of the utilization is detailed in Section 7.

Fig. 2. Hidden volume is placed into a reserved area to avoid data override.
Large amount of storage space is wasted. MobiGyges can fully utilize almost all
the storage space.

end, we present MobiGyges in this paper. MobiGyges is a hidden
volume-based PDE system. It introduces the Volume Management
module and FDE module, which prevents sensitive data loss by
restricting each storage block usable by solely one volume, and
improves the storage utilization by eliminating the ‘‘reserved
area’’ (as shown in Fig. 2b), and avoids rebooting to use the hid-
den volume by introducing the Dynamic Mounting service that
mounts the hidden volume on-demand. MobiGyges also adopts
the Shrunk U-disk method (detailed in Section 5.3.1(3)) and multi-
level deniability (detailed in Section 5.3.2(3)) to jointly defend
against the aforementioned attacks.

Our main contribution is threefold, summarized as follows.

• We propose MobiGyges to solve the data overriding prob-
lem, improve storage utilization with the aid of Thin Provi-
sioning and Device Mapper, and avoid device reboot to use
the hidden volume on-demand by introducing the Dynamic
Mounting service.
• We identify the capacity comparison attack and the fill-

to-full attack, and propose the Shrunk U-disk method and
multi-level deniability to jointly defend against them.
• We implement the MobiGyges proof-of-concept system on

Google Nexus 6P with the LineageOS [13] 13 by porting
Thin-Provisioning (pdata_tools) and Logical Volume Man-
agement (LVM) into the Android system and implementing
a TriggerApp to use hidden volume on-demand secretly.
We conduct experiments to evaluate MobiGyges’s storage
utilization, performance overhead, and experimental results
show that MobiGyes reaches all our design goals and im-
proves storage utilization by over 30% compared with cur-
rent solutions.

The rest of the paper is organized as follows. Section 2 in-
troduces related works, and Section 3 presents the threat model
and assumptions. In Section 4, we introduce our newly identified
PDE oriented attacks. Section 5 presents the design of MobiGyges.
In Section 6, we present the implementation of MobiGyges with
LineageOS 13 on Google Nexus 6P. In Section 7, we conduct
rigorous experiments and analyze the experimental results. Sec-
tion 8 discusses common attacks defended by MobiGyges, the
drawback, and possible future works. Finally, we conclude the
paper in Section 9.



160 W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171

Fig. 3. Data protection systems classification.

2. Related works

Data protection is of paramount importance, and there have
already been various systems proposed for security. In this sec-
tion, we categorize current data protection systems (as shown
in Fig. 3) and introduce related works based on the taxonomy.
Other types of file systems like versioning file system [14] that are
useful in post-intrusion file system analysis applications, or reli-
able file retention and retrievability required by legal regulations
for sensitive data management. However, they are not suitable
for personal sensitive data protection. Hence, they are out of the
scope of this paper and, therefore, not discussed here.

2.1. Full disk encryption

FDE is an elementary way to prevent sensitive data from
attacks by encrypting all data on a volume. As shown in Fig. 4,
on Linux based systems, FDE creates an encrypted logical volume
with the dm-crypt Linux kernel module, and it encrypts all the
data that saved on the logical volume before committing to the
physical storage. Similarly, when an application needs to read
data, it automatically decrypts the data from the physical storage
and redirects the data to the logical volume. Thus, FDE is transpar-
ent to applications. FDE has now been a standard configuration
for any security system. There are many mature FDE solutions,
e.g., TrueCrypt [15,16], BitLocker [17,18], LUKS (Linux Unified Key
Setup) [19], FileVault [20].

TrueCrypt [15,16] is a cross-platform encryption software that
supports multiple cipher encryption scheme. It underpins vari-
ous ways for both software architecturally and hardware chip
performance improvement to speed up the full disk encryption
process. TrueCrypt supports PDE, which will be introduced in
Section 2.2.2.

BitLocker [17,18] is a built-in encryption utility software on
Windows developed by Microsoft to conduct FDE. It has been a
system-level component since Windows Vista. The default en-
cryption scheme is AES with cipher block chaining (CBC) or XTS
with a 128-bit or 256-bit key. Note that CBC is not used over the
whole disk but applied to each individual sector.

LUKS [19] (Linux Unified Key Setup) is an encryption speci-
fication for Linux used for employing FDE. Unlike most of the
encryption software creates their own encryption functionality.
LUKS creates a unified encryption format that can be used for
various tools like cryptsetup.

FileVault [20] is another FDE solution introduced with Mac OS
X Panther by Apple Inc. As recommended by NIST [21], it uses
the AES-XTS mode of AES with 128-bit blocks and a 256-bit key
to encrypt the disk.

However, since FDE uses only one encryption key, all the FDE-
only solutions fail to provide users the deniability of sensitive
data stored on their devices, which is not enough for protecting
sensitive data.

2.2. Plausibly deniable encryption

PDE is the kind of encryption paradigm that provides the
user with the ability to deny the existence of sensitive data on
the device. There are primarily two ways of implementing PDE:
Steganography and the hidden volume.

Fig. 4. Encrypted logical volume and physical storage. Applications use the
normal system call to read or write data to the encrypted logical volume. The
dm-crypt Linux module automatically encrypts and decrypts the data between
the encrypted logical volume and the physical disk.

2.2.1. Steganography
An example of Steganography is hiding sensitive data into a

multimedia file like a photo, a video or an audio file as noise
points. Since people tend to ignore those noise points, the sen-
sitive data is thus protected. However, this technique requires a
large amount of computation, which is not appropriate for mobile
devices, because mobile devices lack computation and storage
resources. StegFS [22] is a steganography-based file system, and
its key idea is to hide data in a bunch of cover files. Another
work [23] uses external entropy sources and erasure codes to de-
niably and reliably store data within the unallocated space of an
existing file system. However, these solutions have the following
shortcomings. (i) It wastes storage space. (ii) The performance is
low especially when writing. (iii) The possibility of data loss is
high. (iv) The modification of Ext2 may lead to compromise of
deniability. All these shortcomings make it not suitable for mobile
devices.

2.2.2. Hidden volume
Hidden volumes achieve PDE by concealing themselves into a

device. It is light weighted and has minimum computational and
storage burdens. However, existing hidden volume solutions have
mainly three drawbacks that we have pointed out in Section 1,
and these drawbacks cannot be addressed at the same time. In
this section, we classify works based on the drawbacks they solve
as follows.

(a) Data loss reducing solutions
TrueCrypt [15] and FreeOTFE [24] are PC PDE solutions. They

can create hidden volume(s) as files or physical volumes. How-
ever, both TrueCrypt and FreeOTFE can only create PDE hidden
volumes on their resource files. Therefore, if these files are broken
or lost, all the data stored on the hidden volumes will be lost.
Thus, the solution is prone to compromise sensitive data.

Mobiflage [7] is the first implementation of the mobile hid-
den volume-based PDE prototype system on Android. To avoid
sensitive data loss, Mobiflage reserves a block of storage space
and places the hidden volume at an arbitrary position in the area.
We call it the ‘‘reserved area’’ technique. However, up to 45% of
the total physical storage is wasted. Based on Mobiflage, Mobi-
Hydra [8] implements multi-level deniability. However, similar
to Mobiflage, MobiHydra also fails to solve the problem of low
storage utilization.

MobiPluto [9,10] is the first file system friendly PDE solution
built on the Android operating system. It leverages virtual logical
volumes techniques, and all block-based file systems can run on
it without modifications. It also addresses the data loss problem
by placing the hidden volume into a ‘‘reserved area’’, therefore,
the storage utilization is low.



W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171 161

Table 1
Feature comparison between MobiGyges and current works. (✓ means the functionality is provided, ✗ means the functionality is not available, and – means not
applicable.)
Features Mobiflage [7] MobiHydra [8] MobiPluto [9] MobiMimosa [11] MobiCeal [12] MobiGyges

Data loss prevention ✓ ✓ ✓ ✗ ✓ ✓
Reserved area elimination ✗ ✗ ✗ – ✗ ✓
Device Reboot avoidance ✗ ✗ ✗ ✗ ✓ ✓
Capacity comparison attack defense ✗ ✗ ✗ ✗ ✗ ✓
Fill-to-full attack defense – – – – – ✓

MobiCeal [12] is another recent hidden volume PDE solution,
and its key contribution is to defend against strong coercive
multi-snapshot adversaries. It does not consider storage waste
and capacity inconsistency problems in previous solutions.

(b) High storage utilization solutions
MobiMimosa [11] is our former work of the hidden volume-

based PDE solution for the Android. Its key idea is manually
choosing storage blocks on a physical device and converting the
blocks into a hidden volume. However, the location information
of the storage blocks is stored on a dm_table file. Once getting
the file, the attacker can easily get sensitive data, and if the
dm_table file is lost, all the sensitive data on the hidden volume
will be lost.

TrustGyges [25] addresses the above problem by storing the
dm_table file on to a cloud server. To avoid run-time attack, it
fetches the dm_table file inside the Trust Execution Environment
(TEE). However, it fails to propose a proper method to use the
hidden volume without the network connection.

Our earlier work [26] first proposes to use the Shrunk U-disk
method to hide the hidden volume, which achieves high storage
utilization and avoids data loss simultaneously. However, it fails
to support using the hidden volume without rebooting the device,
and it cannot mitigate the fill-to-full attack.

(c) Reboot avoiding solutions
MobiCeal [12] is the latest PDE solution and is the only mobile

PDE solution that does not require device reboot. Similar to all
other solutions, it still has the concept of normal mode and PDE
mode. Its main concern is how to fastly switch from the public
mode to the hidden mode (PDE mode). It achieves the device
reboot avoidance by restarting the Android framework. Although,
it reduces the switch time, the time of restarting the Android
framework is still too long (≈10s for entering the PDE mode and
≈70s for returning to normal mode). Furthermore, applications
will suffer response lags after restarting the Android framework
that results from CPU cache misses and hence influences the user
experience.

2.2.3. Functionality comparison
Although mobile PDE has been explored by [7–9,11,12], we

differentiate MobiGyges with them in Table 1 on key features
desired for PDE oriented data protections.

First, most of the current solutions use the ‘‘reserved area’’
to prevent data loss resulting from data override on the hidden
volume. Therefore, they fail to utilize the storage space efficiently.
Second, all current works cannot defend our newly identified
two novel PDE oriented attacks. Consequently, the possibility of
exposing the hidden volume and compromising sensitive data is
high. Our proposed MobiGyges system can address all of these
issues at the same time.

3. Threat model and system assumptions

The key to protecting sensitive data on a hidden volume-based
PDE system is concealing the hidden volume [27]. We propose
the following threat model and put the beneath assumptions for
MobiGyges based on works presented in [7,8].

Table 2
Notation definitions used throughout the paper.
Notation Description

A An attacker.
D A mobile device.
Cp The physical capacity of the device D.
Co The capacity of the device D’s outer volume.
Ol The sector offset of the mapping logical volume.
Sl The number of sectors of the original volume.
T The mapping type.
Dp The mapped device.
Op The offset of the mapped physical volume.
Sm The size of metadata volume.
Sp The size of pool volume.
Sc The chunk size of pool volume.
N The name of the hidden volume.
T (s, b) The trim function that trims string s into a b-length string.
h(x) The hash function that hashes variable x into a hash value.
η The storage utilization.
Offset The hidden volume offset in Mobiflage [7].
vlen The capacity of the device in Mobiflage [7].
H(x) The PBKDF2 iterated hash function in Mobiflage [7].
pwd The password of the hidden volume in Mobiflage [7].
salt The random salt value for PBKDF2 in Mobiflage [7].

1. The attacker knows that the userdata partition is en-
crypted by FDE and also the key to this encryption. But the
attacker lacks the knowledge of MobiGyges’s design. Thus,
the attackers still cannot retrieve the sensitive data because
they do not know where and how to do that. Alternatively,
the attacker knows about the design of MobiGyges; but, not
sure how many hidden volumes there are on the phone.

2. The attacker knows the design of MobiGyges but is uncer-
tain if the key provided by users is the key to the hidden
volume he/she sought.

3. The attacker can get root privilege and the physical storage
of the phone or dump the raw data from the storage
medium.

It is notoriously hard to achieve security on a device with
backdoor hardware or software. Therefore, assumptions involv-
ing the backdoors of the device are necessary for us to design
MobiGyges. We make the following assumptions accordingly.

1. The hardware of users’ mobile devices is backdoor-free.
2. The system-level software (e.g., boot-loader and the mobile

operating system) are backdoor-free.

Without these assumptions, users’ operational behavior can be
monitored, which is impossible to conceal the hidden volume and
protect the sensitive data stored on it.

4. Novel PDE oriented attacks

In this section, we introduce our identified two novel PDE
oriented attacks and assume attacker A conducts the following
attacks. Since these two attacks are correlated with each other,
we propose joint solutions to defend the attacks.



162 W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171

4.1. Capacity comparison attack

When PDE systems are created using hidden volumes, the total
capacity of the outer volume and hidden volumes should be equal
to the physical capacity. Hence, if untreated, the capacity of the
out volume will be smaller than the physical capacity. By com-
paring the capacities of the outer volume and the physical disk,
the attacker can get the capacity inconsistency, and the capacity
inconsistency offers attacker A an indication of the potential
existence of hidden volumes, which may lead to the attacker A
to conduct a further investigation. Thus, the attack makes the
hidden volume-based PDE system highly prone to compromise
the sensitive data. We formalize the attack shown in Eq. (1), and
all notation definitions can be found in Table 2.

A← D←
{
1, Cp > Co

0, Cp = Co
, (1)

where, D denotes the device, Cp is the physical capacity of the
device, and Co is the capacity of the outer volume. 1 repre-
sents device D has a special design of its storage system (PDE is
compromised), and 0 otherwise.

Existing literature fails to defend the capacity comparison
attack. According to (1), we can leverage the second condition
in the equation to defend the attack by eliminating the capacity
difference between the outer volume and the physical disk. To
this end, we have to find a method to modify the capacity of the
outer volume Co to be the same as the physical capacity Cp. We
detail the method used to defending the attack in Section 5.

4.2. Fill-to-full attack

The fill-to-full attack is a complementary attack of the capacity
comparison attack. Suppose now we can defend the capacity
comparison attack by setting the capacity of the outer volume
to be the same as that of the physical disk. Attacker A may still
doubt that the device might have hidden volumes, but he/she is
uncertain about it. To this end, attacker A may write arbitrary
data on the outer volume by filling data to the outer volume and
auditing the total size of the data that have been written. After
getting the audited information, attacker A can further conduct
the capacity comparison attack by comparing the physical capac-
ity with the audited data size plus used capacity on the outer
volume before the fill-to-full attack.

We demonstrate the fill-to-full attack with a real-world exam-
ple. Suppose Alice has two containers: one is a standard 1-liter
container, and another is marked as 3 liters. Alice wants to
know if the second container is a 3-liter container precisely as
it marked. She can fill up the 1-liter container with water and
pour the water to the 3-liter container for 3 times. If the total
amount of water cannot fill up the 3-liter container, or the 3-liter
container overflows, Alice can confirm that the 3-liter container
does not have a 3-liter capacity. The fill-to-full attack uses the
same strategy.

Since the real size of the outer volume is smaller than the
physical capacity. The audited size should be smaller than the
physical capacity, which again reduces to the capacity compar-
ison attack as we introduced in Section 4.1. In the next section,
we introduce MobiGyges design, including how we defend the
two attacks.

5. Mobigyges design

In this section, we introduce the design of MobiGyges. Mobi-
Gyges is designed for protecting sensitive user data rather than
system data that include program executables and data. We first
present our design considerations, and we then propose our
design overview. As the Volume Management module is the key
component of MobiGyges, we finally make detailed anatomy of
the design of the Volume Management module.

Fig. 5. MobiGyges key components and data-flow.

5.1. Design considerations

The current hidden volume-based PDE solutions cannot ad-
dress the aforementioned three problems at the same time, and
they also fail to defend the capacity comparison and the fill-to-full
attacks. MobiGyges is designed to conquer them all.

(1) Eliminating the data override issue. The root of data
loss is due to the data override phenomenon between the outer
volume and the hidden volume(s), which two or more volumes
access the same storage block. Therefore, if we restrict one phys-
ical storage block that can only be used by one volume, the
issue is addressed. Thus we can split the total storage blocks into
fine-grained storage blocks instead of coarsely divide the whole
physical storage into two parts, and the outer volume and the
hidden volume(s) allocate storage space from the fine-grained
storage blocks (as shown in Fig. 2b).

(2) Improving storage space utilization. As we have intro-
duced, the low storage utilization results from the ‘‘reserved
area’’. Therefore, eliminating the ‘‘reserved area’’ can improve
storage utilization.

(3) Avoiding device reboot. Rebooting the device costs time,
which is not convenient for users, especially when users have to
capture some important data and want to store it immediately
into the hidden volume. We intend to avoid device reboot by
mounting the hidden volume on-demand without rebooting the
device.

(4) Defending the novel PDE oriented attacks. The capacity
comparison and the fill-to-full attacks result from the capacity in-
consistency issue. The challenge is how we defend the fill-to-full
and capacity comparison attacks.

5.2. Design overview

MobiGyges is a mobile hidden volume-based PDE system. In
this subsection, an overview of MobiGyges design, starting with
a general description of its components, is presented. Then, we
propose a so-called Shrunk U-Disk method to defend the capacity
comparison attack, and we also leverage the multi-level deniability
to defend the fill-to-full attack. Next, we introduce our design
solution associated with the design consideration introduced in
Section 5.1. Finally, we describe the user steps.

5.2.1. Solutions
With the design considerations discussed in Section 5.1, we

propose our PDE system design solutions. (i) We introduce an
independent component called the Volume Management module
to manage the outer volume and hidden volume(s) rather than
having the volumes themselves handle the hidden volume con-
cealing. It flexibly allocates separate storage blocks for volumes



W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171 163

Fig. 6. Splitting the physical disk into fine-grained storage blocks (each block
is represented by different colors), and each fine-grained block is used only for
one volume (blocks of the outer volume and the hidden volume are allocated
from the split physical disk). Thus, the ‘‘reserved area’’ is not required in the
design. The occupancy information is stored into the metadata datastore.

and avoids the override of the same storage space. The module
also eliminates the ‘‘reserved area’’ and thus mitigates data loss
and improves storage utilization. We use an FDE component to
encrypt the Volume Management module and the file system
structure, which protects the system. (ii) We design a userspace
application called TriggerApp and the dynamic mounting ser-
vice to mitigate device reboot. The dynamic mounting service
can mount the hidden volume without rebooting the device,
and TriggerApp can secretly trigger the use of hidden volumes
and mount the hidden volume on-demand using the dynamic
mounting service without rebooting the device. (iii) We use the
Shrunk U-disk method and multi-level deniability jointly in the
Volume Management module to defend the capacity compar-
ison and the fill-to-full attacks. In terms of fill-to-full attack,
we leverage multi-level deniability by recording the size of data
that has already been written and redirecting the extra attack
IO requests to other places that will not take up the physical
storage space and finally making the size of the attack IO plus
the used capacity before the attack equals the physical capacity.
Moreover, we employ the Shrunk U-disk method to defend the
capacity comparison attack by intentionally labeling the capacity
of the outer volume capacity equivalent to the physical capacity.
We detail the Shrunk U-disk method and multi-deniability in
Section 5.3.1(3) and Section 5.3.2(3).

5.2.2. Key components
MobiGyges consists of four main components. Volume Manage-

ment module, FDE module, physical volume module, and TriggerApps
module. (i) The Volume Management module is the most impor-
tant module of MobiGyges, and it manages the life-cycle of all
the outer volume and hidden volumes. (ii) FDE module is the
encryption layer on top of the physical storage to protect the
Volume Management module, and (iii) physical volume module is
the physical storage of the device provided by the device vendor.
(iv) TriggerApp module is an application, which is designed for
the user to utilize the hidden volume securely and conveniently
without requiring entering the detailed system commands.

Fig. 5 depicts the data-flow in the entire MobiGyges workflow
and the inner data-flow between MobiGyges components. As per
the mentioned figure, (a) users first manipulate TriggerApps, and
(b) TiggerApps then generates data and exchanges data between
the Volume Management. (c) Next, the Volume Management
module processes the data with Device Mapper and Thin Pro-
visioning and sends Input/Output (IO) redirections to the FDE.
(d) PDE finally encrypts or decrypts data with the dm-crypt
kernel module and communicates with the physical volume and
commits data on the physical volume or reads data from it.

Fig. 7. The Dynamic Mounting service structure. Authorized App can mount the
hidden volume on-demand.

5.2.3. User steps
Steps for using MobiGyges:

1. Boot the device with MobiGyges. The outer volume is
mounted automatically. After booting up the device, the
user can start using it as an ordinary device for daily
purposes.

2. When using hidden volumes, open TriggerApp and enter
a level (level of deniability is detailed in Section 5.3.2) of
the password to mount the corresponding hidden volume
without rebooting the device.

3. If an attacker suspects that PDE exists on the device and
conducts the fill-to-full attack, the user can use level 0
before then (detailed in Section 5.3.1(4)) to defend the
attack.

5.3. The volume management module

This subsection details the design of the key part of Mobi-
Gyges, the Volume Management module. The Volume Manage-
ment module leverages Thin Provisioning and Device Mapper by
converting the physical storage into a Thin Pool and using the
virtual logical volume to manage the physical storage in a fine-
grained manner. In the rest of this subsection, we show how
fine-grained storage blocks used by the Volume Management
module can solve the aforementioned problems and defend the
attacks, and we then anatomize each service in the module.

5.3.1. Volume management module circumvention

(1) Data Loss and Low Storage Utilization Elimination
MobiGyges avoids data loss and improves the low storage

utilization using the Volume Management module with the fol-
lowing steps as shown in Fig. 6.

(i) The Volume Management module splits the whole physical
disk into fine-grained storage blocks (i.e., 64 KB), and then, (ii) the
module allocates each fine-grained storage block only for one vol-
ume, so the storage space of each volume is independent, and the
data on each fine-grained storage block cannot be overridden by
other volumes. Hence, the data loss problem is avoided. (iii) The
module tracks the usage of each fine-grained block, and stores
volumes and the storage block mapping information (metadata)
in a special format and encrypts the metadata with FDE on the
physical disk. The metadata is stored in the metadata logical
volume as shown in Fig. 9. When allocating storage space for
the metadata logical volume, the available storage blocks are first
sorted from big to small, and the least storage block that is larger
than the needed storage size is used. In the figure, we can see that
(iv) no ‘‘reserved area’’ is used because of the exclusive access



164 W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171

Fig. 8. Multi-level deniability. Level 0 is used to defend the fill-to-full attack.

of the same storage block from volumes, and hence the storage
utilization is improved.

(2) Device Reboot Avoidance
MobiGyges avoids device reboot when using the hidden vol-

ume by leveraging the Dynamic Mounting service in the Volume
Management module. The Dynamic Mounting service first filters
the mounting request by identifying the owner of the request,
and it only allows authorized applications (e.g., the TriggerApp)
to mount the hidden volume. The mounting request is sent as-
sociated with a token generated by using OAuth [28], and thus
if the token is not valid, the Dynamic Mounting service rejects
the request. Then the Dynamic Mounting service calculates the
name of the hidden volume-based on the given PDE password and
mounts the hidden volume on the mounting point. The procedure
is shown in Fig. 7.

(3) Capacity Comparison Attack Defense
The attacker may conduct the capacity comparison attack and

the fill-to-full attack to expose the hidden volume and compro-
mise the sensitive data.

MobiGyges leverages the Shrunk U-disk method to defend
against the capacity comparison attack. Shrunk U-disk is a kind
of disk labeled with a bigger capacity, and operating systems also
display the labeled capacity to users. However, the real capacity
of the disk is smaller than the labeled capacity. For example, a
memory stick is labeled to have 32GB storage, and the operating
system also shows the capacity is approximately2 equal to 32GB,
but its actual capacity is only 8GB. Only when exhausting more
than 8GB storage space on it, can the user find out the trick.
However, users usually would not do that and cannot discover the
‘‘trick’’. We can exploit this ‘‘trick’’ to defend agagin the capacity
comparison attack by simply modifying the capacity of the outer
volume to be the same as the physical capacity, which protects
the hidden volume. The implementation choice of Shrunk U-disk
method is detailed in Section 5.3.2

The challenge is how we can modify the volume capacity. We
leverage Thin Provisioning to fill the gap. Thin Provisioning is a
novel technology designed to address the storage waste problem
in the Cloud data center (DC). Because the servers are usually
installed with larger physical storage capacity than the actual size
of data usage for future demands. This is called Thick Provisioning,
but the physical storage cannot reach its capacity upper limit
before replacing the disk with a larger one. Hence, a large amount
of storage space is wasted. Thin Provision allows operators to
flexibly preconfigure a bigger capacity of virtual volumes than
the physical capacity, and physical storage spaces are not be used
until data commit on them. When the physical storage exhausts,
the operator can install new physical disks without modifying any
previous settings. We employ the flexibility of Thin Provisioning
and set the capacity of the outer volume to be the physical
capacity to mitigate the capacity comparison attack.

(4) Fill-to-Full Attack Defense
It is natural to conduct the fill-to-full attack when the attacker

suspects the existence of the hidden volume(s). We leverage

2 It is a convention that storage hardware vendors using 1k=1000 rather than
1k=1024 to calculate the capacity.

Fig. 9. The creation of the outer volume and hidden volume. The outer volume
and the hidden volume are virtual logical volumes.

multi-level deniability to defend against the attack. Multi-level
deniability allows users to define different levels of importance
of sensitive data, and each level of sensitive data is associated
with one hidden volume. To defend against the fill-to-full attack,
we introduce a special level (level 0) of deniability, which is
associated with /dev/null. As shown in Fig. 8, when the attack
discovers the hidden volume and tries to conduct the fill-to-
full attack, the user uses the level 0 deniability and gives the
device to the attacker to perform the fill-to-full attack. Attack
data will first be written to the outer volume and recorded by the
Volume Management module. When the physical disk exhausts,
new attack data will be directed to /dev/null, and the Volume
Management module will occur a full storage error when the
recorded size of attack data plus the used capacity of the outer
volume before the attack equals physical capacity.

5.3.2. Volume management module composition
In this subsection, we bring the technical design details of

the Volume Management module and present how the Volume
Management module manages the physical disk.

The Volume Management module leverages Thin Provision-
ing and Device Mapper to convert the physical disk into a Thin
Pool, which is a resource pool consists of fine-grained storage
blocks. The Volume Management module then creates virtual
logical volumes as to the outer volume and hidden volumes. The
storage spaces of the virtual logical volumes are allocated from
the Thin Pool, and each virtual logical volumes allocates storage
blocks distinctly from others. As depicted in Fig. 9, (i) the Vol-
ume Management module converts physical disk into a volume
group with Device Mapper. Each volume group consists of one
or more physical disks. (ii) Then, the Volume Management mod-
ule creates two logical devices using the created volume group
with Device Mapper, namely, the data device and the metadata
device. The data device is the storage space of Thin Pool, and the
metadata device records the usage of each fine-grained storage
block. Device Mapper is for mapping existing block devices into
another logical block device. Device Mapper redirects or filters
IO requests from logical block devices to the mapped device
(physical disk in our case). The process can be formalized by a
5-tuple, ⟨Ol, Sl, T ,Dp,Op⟩, where Ol denotes the sector offset of
mapping logical volume block, and Sl is the number of sectors of
the original volume block. T denotes the type used to describe the
way of mapping. Dp denotes the mapped device, and Op denotes
the offset of the mapped physical volume block. (iii) Next, the
Volume Management module converts the two devices into a
Thin Pool. (iv) Finally, the Volume Management module creates
two virtual logical volume by using fine-grained storage blocks in
Thin Pool with Device Mapper.



W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171 165

Fig. 10. Dynamic mounting state management.

We anatomize each components in the Volume Management
module in the rest of this subsection.

(1) Thin Pool is the resource pool used for virtual logical
volumes and created atop the encrypted logical volume. As shown
in Fig. 11, it virtualizes the encrypt logical volume as a resource
pool by carefully splitting the whole storage space into fine-
grained storage blocks, and the outer volume and the hidden
volumes allocate storage space from the pool on demand. When
one storage block in the Thin Pool is allocated by one virtual
logical volume, the storage block will be marked as used, and
it will not be allocated for other virtual logical volumes. Hence
the overriding problem is addressed. The mapping of fine-grained
storage blocks and virtual logical volumes is stored in the meta-
data device in Fig. 9. In our case, each block is 64 KB in size.
Since each block is exclusively used by the hidden volume or the
outer volume separately, the ‘‘reserved area’’ is needless. Thus,
the storage utilization also improves.

When creating the data and metadata logical volumes, the
relationship between the size of the metadata volume and data
volume can be formalized as follows.

Sm =
Sp
Sc
× 64, (2)

where Sm denotes the size of metadata volume. Sp denotes the
size of pool volume, and Sc denotes the chunk size of pool volume.

(2) Virtual logical volumes are the final logical volume used
as an outer volume or a hidden volume. The reason it is called
‘‘virtual’’ is, when creating the virtual logical volume, its storage
resources are not allocated until data commit on it. The capacity
assigned at the creation time is only a label, and it does not
indicate the actual capacity it possesses. The topmost part of
Fig. 11 shows the architectural level in the MobiGyges system.
In MobiGyges, the capacity of the outer volume is configured
as big as the physical volume to defend against the capacity
comparison attack. Device Mapper is used to creating the virtual
logical volume from Thin Pool. For applications, the usage of
the virtual logical volume has no differences between a physical
volume.

(3) Multi-deniability allows users to define different levels of
importance for their sensitive data and put them into different
hidden volumes corresponding to different levels of deniability.
MobiGyges provides multi-deniability by creating multiple hid-
den volumes. Each hidden volume is reserved for providing a
specific level of deniability. To this end, even if the hidden volume
is exposed, users may still deny the existence of sensitive data
because the attacker fails to know the number of deniability the
system provides, and which hidden volume is used to store the
sensitive data. Each hidden volume has its name and password,
and the name is calculated from the password. Without the
password, the system cannot find the correct name of the hidden
volume and cannot mount the hidden volume and thus fails to
fetch the sensitive data stored on it. The name of each hidden
volume is calculated with (3).

N = T (h(passwd+ salt), b), (3)

where, N is the final name. T (s, b) is a trim function that trims
s into a b-length string. h(x) is a hash function that hashes x

into a hash value. passwd is the user password towards a hidden
volume, and salt is used for counter rainbow table attack [29].

(4) Dynamic Mounting mounts the hidden volumes on de-
mand. Unlike previous solutions, which requires rebooting the
device and logging into the PDE mode to use the hidden volumes.
MobiGyges can use hidden volumes on demand needless device
rebooting to switch to the PDE mode. Therefore, authenticated
applications can use dynamic mounting to mount the needed
hidden volume instantly. Due to the confidentiality of the hid-
den volume, operations of authenticated applications should be
cautious. When requesting for mounting the hidden volume, an
access token is needed to validate the application, and if the token
is not valid, the mounting request is rejected.

Android is a UNIX-like system, and in a UNIX-like system, de-
vices are presented as block device files. Each block device file has
its own name. Therefore, when using a hidden volume, users first
enter the password of the wanted hidden volume at authenti-
cated applications such as TriggerApp and MobiGyges will mount
the correct hidden volume-based on (3). As depicted in Fig. 10,
when the hidden volume is mounted, a timer is started, and the
hidden volume will be automatically unmounted as the timer
times out. This mechanism protects the hidden volume from
being discovered by examining the currently mounted devices.

5.3.3. TriggerApp
TriggerApp is the interface among the users and MobiGyges’s

hidden volumes. Users have to use TriggerApp to trigger the
special operations and dynamically mount the hidden volume
for storing sensitive data. TriggerApp functionality should be se-
cret to prevent MobiGyges from exposing. Therefore, TriggerApp
is recommended to be implemented inside a system built-in
application.

6. Implementation

We implement our MobiGyges prototype system on LineageOS
13 for Google Nexus 6P. We choose LineageOS rather than the
original Android Open Source Project because LineageOS provides
necessary vendor-specific hardware adaptation like camera and
baseband driver supports. For the Volume Management com-
ponent of MobiGyges, we add about 500 lines of C code to
LineageOS, and we port Logical Volume Management (LVM) and
Thin Provisioning tools (pdata_tools) [30] and some system build-
ing scripts to Android. For TriggerApp, we add approximately 500
lines of Java code. In this section, we present the implementation
challenges and considerations of MobiGyges.

(1) Manipulating the userdata partition is hard on An-
droid. The initialization of MobiGyges requires mounting and
unmounting the userdata partition. However, the userdata
partition cannot be unmounted while the system is running be-
cause some system files are stored on the userdata partition,
and these files are busy in use [31]. For system stability and
data integrity, the operating system does not allow the userdata
partition to be unmounted while busy. However, the creation of
Thin Pool and virtual logical volume requires a free (not in used)
partition. To this end, we put the Thin Pool and virtual logical
volume creation procedure executing at the system booting stage
before mounting the userdata partition. We put the code right
after the FDE procedure in Android Volume Daemon (VOLD) lo-
cated at cryptfs.c. The code executes the lvm toolset by forking
a child process.

(2) Running toolsets on Android is another challenge for
us because the toolsets are usually for desktop and server that
are x86 platforms rather than the ARM-based mobile platforms.
Luckily, Android is based on Linux kernel and has the kernel



166 W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171

Fig. 11. Disk layout of MobiGyges. (1) The userdata is the physical volume that used for storing user-generated data. (2) FDE is applied to encrypt both data and
the structure on top of it. (3) all the userdata storage is virtualized as a Thin Pool. (4) virtual logical volumes are created as outer volume and hidden volume,
respectively.

modules needed by Thin Provisioning and Device Mapper, and the
system calls are the same as desktop and server versions. There-
fore, porting LVM and pdata_tools that are used to build logical
volumes, Thin Pool, and virtual logical volumes do not require
much code and building system modification. We use gcc-arm-
linux-androideabi to conduct the cross-compile. We first in-
tended to compile the source directly, but these tools require li-
braries that should be cross-compiled in advance and made them
Android runnable. Apart from that, -enable-static_link and
LDFLAGS=-static flags should be set to ensure the compilation
target is statically executable. Otherwise, the toolsets cannot run
when pushing to Android because Android lacks of these libraries.
We also modified the code in the Android build system to compile
the toolsets into the final installation package.

(3) TriggerApp implementation is an important part of the
work of implementing MobiGyges. We implement our TriggerApp
into the Android system built-in Calculator. Apart from the basic
calculation functionality, our tailored Calculator has the extra
functionality like secret recording, filming, and picturing. The
calculator could still make calculations, and otherwise, the sys-
tem is prone to expose the special design and thus compromise
sensitive data. As we all know, dividing any number by 0 is
an illegal operation. When users attempt to do such an illegal
operation, the system will throw an exception and prompt an
alert to users to indicate the calculation is not allowed. Thus,
we change the exception processing behavior of the calculator
by modifying it to display a special operation Use Interface (UI)
according to what the user enters. Identifying the ‘‘divided by 0’’’
operation can be done by parsing the input string whenever the
user presses the ’=’ button. However, users usually just conduct
normal calculations operations, and the input parsing is worthless
under such conditions. Android applications are written in Java.3
Java has an ArithmeticException that whenever an illegal
operation occurs, it throws an ArithmeticException. We put
our parsing code into the catch {} code block. When an Arith-
meticException is triggered, the code will analyze the input
and process the operations accordingly.

(4) Dynamic mounting is implemented as SystemService.
Normally, all kinds of Android supporting hardware has the
SystemServices and Hardware Abstract Layer (HAL) definition
pair. Apart from that, lightweight Service and lightweight HAL are
also provided as pairs in Android. For example, the WiFi module
has both Service and HAL definitions. But the HAL definition
is needless in our system because no new physical hardware
devices are added to the system. We implement the MobiGyges
SystemService by using the method provided by [32]. Inside the
dynamic mounting SystemService, it (i) calculates the trimmed

3 C/C++ can also be applied to Android application to improve the running
efficiency

hash value with the input password and salt by using (3). The
salt uses the crypto footer of the userdata partition in our
case, and (ii) it mounts the corresponding hidden volume with
the calculated device name and the access token. If either the
password or the access token is incorrect, the mounting request
is rejected.

(5) Full Disk Encryption (FDE) is used to protect the Volume
Management module. MobiGyges first performs FDE by creating
an encryption layer on the userdata partition, which makes
it easy to encrypt all data on the userdata partition. Mobi-
Gyges uses 128-bit Advanced Encryption Standard (AES) [33] with
cipher-block chaining (CBC) and ESSIV:SHA256 to perform the
encryption. The master key is encrypted with 128-bit AES via
invocations to the OpenSSL library. It is recommended that users
use 128 bits or more for the key (with 256 being optional) to
improve the security. Fig. 11(2) represents the encrypted logical
volume created atop the physical volume. It also shows the logical
position in MobiGyges. FDE is created using the Device Mapper
technology.

7. Evaluation

In this section, we describe experiments on storage utilization
and performance overheads by comparing MobiGyges with state-
of-the-art works. We conduct experiments on Google Nexus 6P
mobile phone with 3GB LPDDR4 DRAM and an octa-core CPU with
4 Cortex-A53@1.55 GHz cores and 4 Cortex-A57@2 GHz cores. We
use dd [34], bonnie++ [35], and AndroBench [36] to conduct the
experiments.

7.1. Performance evaluation tools

dd copies blocks of data from one file to another and is
provided by most UNIX platforms. It allows parameters like r/w
buffer size that can be easily used for the IO performance study.
We also use the fsync parameter in dd because it does not
bypass the kernel disk caches, and when it writes data to the
device, the data may still not be committed on the device upon
dd completion.

We use Bonnie++ in our experiments: an IO benchmark tool
suite that aims to perform several simple tests of hard drive and
file system performance. It has 2 types of tests. The first is to test
the IO throughput. The second is to test creation, reading, and
deleting operations on many small files. We use the second type
in our test.

AndroBench is a popular benchmark tool for Android. It is an
Android application, which provides sequential/random r/w tests
and SQLite benchmarks. Since Android uses SQLite as its built-in
database for applications, the performance of SQLite is trivial for
Android Apps user experience and is closely correlated with the
storage performance.



W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171 167

Fig. 12. Disk utilization result of MobiGyges (1 hidden volume) and Mobiflage.
Mobiflage∗ represents all the systems uses the same mechanism as Mobiflage.

7.2. Storage utilization evaluation

MobiGyges creates the Thin Pool using (2) to calculate the size
of metadata volume. Hence, the capacity of Thin Pool equals to
the size of the data volume, so the size of the data volume is the
actual capacity that allows users to store their data on the device.
To this end, physical storage utilization η can be calculated with
(4). The definitions of the notations used in (4) are the same as
that of (2) that can be found in Table 2.

η =
Sp

Sp + Sm
=

Sp
Sp
Sc
× 64+ Sp

× 100% = 99.9024%. (4)

We compare disk utilization of Mobiflage and MobiMimosa
with MobiGyges because most of the related state-of-the-art
works [8–10,12] use the same method as Mobiflage. For all
experiments, we use dd to conduct experiments, and each has
50 trials.4

As shown in Fig. 12, the average disk utilization of MobiGyges
is 79.81%. The 20% loss is mainly because each Ext4 file system
takes up about 10% of the storage for its metadata use [37,38],
and we have two volumes formatted with Ext4, one for the
outer volume and the other for the hidden volume. Therefore,
the storage space utilization of MobiGyges is 99.76%, which is
equivalent to the theoretical result shown in (4).

Offset = ⌊0.75× vlen⌋ − (H(pwd ∥ salt)mod⌊0.25× vlen⌋). (5)

Mobiflage [7] proposes (5) to calculate the offset of placing
the hidden volume, and this equation indicates the capacity of
the hidden volume is between 25%–50% of the total disk capacity.
Therefore, Mobiflage introduces up to 25% of the storage waste.
Since each file system takes another 10% of the capacity for
metadata, and there are two file system instances used (one
used for the outer volume and the other used for the hidden
volume), there is 20% of inevitable waste on each device. Thus,
the total storage waste for Mobiflage is 45%. We want to get
the improvement purely benefitting from our MobiGyges design,
so we add 20% for each of the experimental results, and hence,
MobiGyges increases the storage utilization by over 30%.5

MobiMimosa [11] achieves storage utilization improvement
by using the dm_table to record the storage block used by the
hidden volume for the outer volume. Therefore, the only waste
is dm_table. MobiMimosa uses the Ext4 file system, and the
default block size of the Ext4 file system on Android is 4 KB.
Consequently, if a hidden volume has 5GB capacity, the size of

4 Results are stable in the first 20 trials, and we conduct another 30 trials to
decrease the errors.
5 ((79.81%+ 20%)− (55%+ 20%))/(55%+ 20%) ≈ 30%

Fig. 13. Bonnie++ and dd IO performance test. Baseline is the original Android
FDE. Outer is the MobiGyges’s outer volume, and Hidden is the MobiGyges’s
hidden volume.

the dm_table file can be up to 64 MB6, which means the size of
dm_table is 1.25% of the capacity of the hidden volume. Since the
maximum size of a hidden volume is usually smaller than a half of
the total physical disk capacity, the size of the dm_table file can
take up to 0.625% of the total physical storage space. We test the
storage utilization on Google Nexus 6P, with the same setting as
MobiGyges. The results show that the overall storage utilization
of MobiMimosa that has one 5GB hidden volume is 78.375%.

7.3. Performance overhead evaluation

Performance overhead on the PDE system is critical because
the attack may compromise the PDE system if the performance
overhead is significant. We evaluate the IO performance overhead
of MobiGyges (Outer and Hidden in the figures) by comparing the
IO performances of MobiGyges with that of Android FDE (Baseline
in the figures) because Android FDE is enabled by default, and
MobiGyges uses Android FDE as a foundation. In the rest of this
subsection, we use different IO benchmark tools to evaluate the
performance of the system and analyze the overhead.

(1) Bonnie++ test: We run 50 trials7 of sequential block tests
on a 6GB file8 on each system. Fig. 13 shows that the outer
volume outperforms approximately 10% over Android FDE in
terms of reading. The reason for MobiGyges’s outer volume per-
forms better is because of the IO request batching mechanism.
When reading sequentially, the system can merge different IO
requests, cache them, and read a bunch of adjacent storage blocks
together [39]. However, the writing performance is reduced by
about 12%. We analyze the impact of the performance overhead
by considering the user experience. With the same 1GB file,
we calculate the time difference between MobiGyges and the
baseline (Android FDE). Therefore, in terms of reading, MobiGyges
reduces about 500 ms compared with the original Android FDE.
Similarly, MobiGyges takes 600 ms longer than the original An-
droid FDE. We believe the performance penalty is acceptable.
Comparing the hidden volume and outer volume of MobiGyges,
the write performance is only reduced by 3%. The reduction
results from the extra encryption over the hidden volume.

6 Each dm_table item is 80 byte.
7 The results are very stable, we run 50 trials to minimize the error.
8 Bonnie++ requires to test on a file whose size is twice as big as the device

RAM to decrease the influence of system cache.



168 W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171

Fig. 14. Sequential read and write speed and random read and write speed comparing between outer volume and original Android FDE. Tested with AndroBench.
The unit of SQL operations is Q/s (query per seconds). Outer is the MobiGyges’s outer volume and Baseline is the original Android FDE.

(2) dd test: We use the dd command to generate data from
/dev/zero and write data on the volume with buffer size 600MB
for once9 to test the writing performance of MobiGyges and the
original Android system. Then, we use dd to read data from the
volume and write the output to the /dev/null ‘‘black hole’’,10
to test the reading performance of MobiGyges and the original
Android system. Normal dd version prints the statistical data after
each command finishes. However, the Android system uses the
busybox [40] version dd tool that prints nothing after completion.
Thus, we use the time command to count the execution time.
Moreover, we clear the cache in RAM before every test11, which
eliminates the error caused by the operating system caching
mechanism. As shown in Fig. 13, dd shows equivalent results as
that of bonnie++.

(3) AndroBench test: Due to the permission control of An-
droBench, we fail to test the performance of the hidden volume,
but comparing the performance differences between the Android
FDE and MobiGyges’s outer volume is still sufficient to show the
performance overhead of MobiGyges. Fig. 14 depicts the result of
the AndroBench tests. In the random r/w (RND-W and RND-R)
and sequential write (SEQ-W) tests, MobiGyges has a perfor-
mance penalty due to the Thin Pool and device mapping. In the
sequential read (SEQ-R) test, MobiGyges outperforms the baseline
because of merged IO requests and batch fetching mechanism.
For SQL queries, MobiGyges reduces about 8% of the performance
compared with the baseline. However, in terms of modifying data,
which writes data on the volume, the performance penalty can
be up to 22%. SQLite uses VDBE (Virtual Database Engine) as
its background engine, and VDBE uses the B-Tree data structure
to store data on a file system. VDBE also adopts the concept
of paging as a unit to allocate space for the value of a key,
which is similar to pages in the operating system virtual memory
mechanism. The size of a page is fixed, so if the record is bigger
than a page, it has to be stored into several pages that are linked
together using pointers. To this end, it has to first read all the
pages associated with the key before VDBE can finally update
the record. Consequently, the multiple writes downgrade the
performance of SQL queries, but We believe the performance
penalty for the SQL operations is acceptable [41].

9 dd if=/dev/zero of=disk.img bs=600M count=1 conv=fsync
10 dd if=disk.img of=/dev/null bs=600M count=1
11 echo 3 > /proc/sys/vm/drop_caches

Fig. 15. Performance overhead. the lower, the better. We use FDE (LUKS [19]
on Linux) as the baseline.

7.4. Performance overhead comparison

In this subsection, we compare the performance overhead
between MobiGyges and some recent related works. Note that
MobiGyges is not optimized for improving the IO performance.
We post our IO performance overhead comparison experimental
results here for the further optimization target.

We implement the disk management part of Mobiflage [7],
MobiHydra [8], MobiMimosa [11], MobiCeal [12] on Linux desk-
top PC and evaluate their performance with dd. The experimental
results are shown in Fig. 15, and the baseline system is the An-
droid FDE.12 Mobiflage, MobiHydra and MobiMimosa are native
solutions, and their outer volume and the hidden volume are im-
plemented in the same way as Android FDE. Hence, they have the
equivalent performance to the Android FDE. MobiCeal and Mobi-
Gyges leverage storage virtualization mechanisms, which intro-
duce performance overheads. MobiGyges outperforms MobiCeal
on the performance overhead.

12 We implement Android FDE by using LUKS on Linux.



W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171 169

8. Discussion

In this section, we discuss counter-measurements of Mobi-
Gyges towards defending against common attacks, and we then
discuss the drawback and possible future works.

8.1. Security discussion

Common attacks are identified by the existing literature and
can be solved by existing counter-measurements. MobiGyge’s
mechanism of defending aginst these attacks makes no difference
to existing ones, and the discussion is to show that MobiGyges
considers defending against common attacks by design. Experi-
ments of validating these mechanisms have been listed as part of
our future works.

(1) Password guessing is the attack by trying all possible
password characters repeatedly in a brute force way to iden-
tify the correct password. MobiGyges provides both salt and
retrial timeout mechanism that can efficiently defend against the
password guessing attack and the rainbow table attack.

(2) Raw data parsing is conducted by parsing the physical
disk raw data and try to reconstruct the files. MobiGyges uses
FDE to defend against the raw data parsing attack, in which all
data are encrypted before committing to the physical disk.

(3) Encryption primitive leakage means the type of encryp-
tion or data protection is leaked. In the hidden volume-based
PDE, it refers to hidden volumes are exposed and is generally
conducted from parsing the raw physical disk data. MobiGyges
allocates fine-grained storage blocks from Thin Pool for the outer
volume and hidden volumes on demands, which stores data in
a striped way. Thus, attackers cannot tell the belonging of each
data block and fail to distinguish from volume to volume. More-
over, MobiGyges applies FDE for Thin Pool, which increases the
complexity and protects hidden volumes.

(4) Flash storage leakage refers to the NADN flash storage
structure used by mobile devices could leak sensitive data be-
cause flash storage executes writing or wiping data in the unit of
page, and can only change some bits in the page to 0 or change
all bits in the page to 1. Hence, writing happens only on an
empty page (with all 1s). Thus, data needs another temporary
page for saving the current unchanged data in the original page.
This temporary page can leak the sensitive data if not erased in
time. MobiGyges addresses this problem with FDE, and data on
flash pages is not the plain data but cipher data, which mitigates
the flash storage leakage.

(5) Mobile carrier leakage represents the possible incon-
sistent record from the mobile device and the mobile carrier
provider. The existing literature separate working modes into
two, and PDE can only be used under the PDE mode. At the time
using the PDE mode, carrier information (e.g., phone call history,
cellular traffic usage) are stored on the hidden volume, and
attackers will find that the information recorded by the carrier
provider is more than that recorded by the outer volume. Thus,
this is prone to expose hidden volumes. MobiGyges eliminates
mobile carrier leakage by removing the design of two modes, and
all the information is stored on the outer volume. Thus, carrier
information records are consistent between the carrier provider
and the outer volume, which mitigates the leakage.

8.2. Drawbacks and future works

Although MobiGyges brings new hope to the PDE commu-
nity, it falls short when the attacker can record the fill-to-full
attack data and tries to retrieve the filled data from the de-
vice. One possible remedy is to employ data compression tech-
niques to mitigate this issue. MobiGyges also opens up several

interesting directions for future research. For example, theoret-
ically evaluating the mathematically model of MobiGyges and
existing works, reducing the performance overhead by replacing
the Linux Thin Provisioning module with newly proposed high-
performance Thin Provisioning tools (e.g., ThinStore [42]), and
conducting further experiments in terms of defending against
common attacks (e.g., rainbow table attack).

9. Conclusion

This paper has presented MobiGyges, a PDE system that ad-
dresses the problems of data loss, storage waste, and device
reboot on existing PDE systems by splitting the physical storage
into fine-grained storage blocks, and each storage block is used
only by one volume and using Dynamic Mounting service to
mount the hidden volume without rebooting the device. We have
also identified the capacity comparison attack and fill-to-full attack
targeted at PDE systems, and MobiGyges can jointly leverage the
Shrunk U-disk method and multi-level deniability to defend against
them. We have implemented a proof-of-concept system on Lin-
eageOS 13 for real mobile devices. Experimental results show that
MobiGyges achieves over 30% storage utilization improvement
with an acceptable performance overhead.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

CRediT authorship contribution statement

Wendi Feng: Conceptualization, Methodology, Software, Vali-
dation, Writing- original draft. Chuanchang Liu: Conceptualiza-
tion, Resources, Project administration. Zehua Guo: Writing -
review & editing. Thar Baker: Writing - review & editing. Gang
Wang: Writing - review & editing. Meng Wang: Writing - review
& editing. Bo Cheng: Supervision. Junliang Chen: Supervision.

Acknowledgments

This work was supported in part by the National Key Research
and Development Program of China under Grant
2018YFB1003804, Natural Science Foundation of China under
Grant 61921003, the China Scholarship Council, and the Beijing
Institute of Technology Research Fund Program for Young Schol-
ars. We would also like to thank the editors and anonymous
reviewers for their valuable comments and suggestions.

References

[1] Q. Zhang, G. Wang, J. Chen, G.B. Giannakis, Q. Liu, Mobile energy transfer
in internet of things, IEEE Internet Things J. 6 (5) (2019) 9012–9019,
http://dx.doi.org/10.1109/JIOT.2019.2926333.

[2] F. Al-Turjman, Intelligence and security in big 5G-oriented IoNT: An
overview, Future Gener. Comput. Syst. 102 (2020) 357–368.

[3] M. Xiong, Q. Liu, G. Wang, G.B. Giannakis, C. Huang, Resonant beam
communications: Principles and designs, IEEE Commun. Mag. 57 (10)
(2019) 34–39, http://dx.doi.org/10.1109/MCOM.001.1900419.

[4] J. Götzfried, T. Müller, Analysing android’s full disk encryption feature,
JoWUA 5 (1) (2014) 84–100.

[5] Android Open Source Project, Full-disk encryption, 2019, https://source.
android.com/security/encryption/full-disk/, [Online; Accessed 28 August
2019].

[6] R. Canetti, C. Dwork, M. Naor, R. Ostrovsky, Deniable encryption, in: Annual
International Cryptology Conference, Springer, 1997, pp. 90–104.

[7] A. Skillen, M. Mannan, Mobiflage: Deniable storage encryptionfor mobile
devices, IEEE Trans. Dependable Secure Comput. 11 (3) (2014) 224–237.

http://dx.doi.org/10.1109/JIOT.2019.2926333
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb2
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb2
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb2
http://dx.doi.org/10.1109/MCOM.001.1900419
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb4
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb4
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb4
https://source.android.com/security/encryption/full-disk/
https://source.android.com/security/encryption/full-disk/
https://source.android.com/security/encryption/full-disk/
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb6
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb6
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb6
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb7
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb7
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb7


170 W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171

[8] X. Yu, B. Chen, Z. Wang, B. Chang, W.T. Zhu, J. Jing, Mobihydra: Pragmatic
and multi-level plausibly deniable encryption storage for mobile devices,
in: International Conference on Information Security, Springer, 2014, pp.
555–567.

[9] B. Chang, Z. Wang, B. Chen, F. Zhang, Mobipluto: File system friendly
deniable storage for mobile devices, in: Proceedings of the 31st Annual
Computer Security Applications Conference, ACM, 2015, pp. 381–390.

[10] B. Chang, Y. Cheng, B. Chen, F. Zhang, W.T. Zhu, Y. Li, Z. Wang, User-friendly
deniable storage for mobile devices, Comput. Secur. 72 (2018) 163–174.

[11] S. Hong, C. Liu, B. Ren, Y. Huang, J. Chen, Personal privacy protection
framework based on hidden technology for smartphones, IEEE Access
(2017).

[12] B. Chang, F. Zhang, B. Chen, Y. Li, W.T. Zhu, Y. Tian, Z. Wang, A. Ching,
MobiCeal: Towards secure and practical plausibly deniable encryption on
mobile devices, in: 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN, 2018, pp. 454–465.

[13] J. John, C. Raju, Design and comparative analysis of mobile computing soft-
ware framework, in: 2018 Second International Conference on Inventive
Communication and Computational Technologies, ICICCT, IEEE, 2018, pp.
1639–1644.

[14] L. Catuogno, H. Löhr, M. Winandy, A.-R. Sadeghi, A trusted versioning
file system for passive mobile storage devices, J. Netw. Comput. Appl. 38
(2014) 65–75.

[15] Team, TrueCrypt, TrueCrypt-Free open-source disk encryption software for
Windows Vista/XP, Mac OS X, and Linux, Sept 2019, 2019, http://www.
truecrypt.org/, (Accessed 20 September 2019).

[16] A. Czeskis, D.J.S. Hilaire, K. Koscher, S.D. Gribble, T. Kohno, B. Schneier,
Defeating encrypted and deniable file systems: Truecrypt v5. 1a and the
case of the tattling OS and applications, in: HotSec’08, 2008.

[17] The Windows Team, Bitlocker drive encryption overview, 2019, https:
//technet.microsoft.com/en-us/library/cc732774(v=ws.11).aspx.

[18] N. Kumar, V. Kumar, Bitlocker and windows vista, 2008.
[19] C. Fruhwirth, LUKS–Linux Unified Key Setup, 2009.
[20] X. OS, About filevault 2, Apple inc. Viitattu 22 (2014).
[21] M.J. Dworkin, Recommendation For Block Cipher Modes of Operation: The

XTS-AES Mode for Confidentiality on Storage Devices, Tech. rep., 2010.
[22] A.D. McDonald, M.G. Kuhn, Stegfs: A steganographic file system for linux,

in: International Workshop on Information Hiding, Springer, 1999, pp.
463–477.

[23] A. Barker, S. Sample, Y. Gupta, A. McTaggart, E.L. Miller, D.D.E. Long,
Artifice: A deniable steganographic file system, in: 9th USENIX Workshop
on Free and Open Communications on the Internet, FOCI 19, USENIX
Association, Santa Clara, CA, 2019, URL https://www.usenix.org/conference/
foci19/presentation/barker.

[24] S. Dean, Freeotfe, 2019, https://en.wikipedia.org/wiki/FreeOTFE/, (Accessed
18 September 2019).

[25] W. Feng, C. Liu, B. Ren, B. Cheng, J. Chen, TrustGyges: A hidden volume
solution with cloud safe storage and TEE, in: Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys’18, 2018, p. 511.

[26] W. Feng, C. Liu, Z. Guo, T. Baker, B. Cheng, J. Chen, Data loss prevention and
storage utilization improvement of the hidden volume on mobile devices,
in: 2019 IEEE Symposium on Computers and Communications (ISCC), 2019,
pp. 1–6.

[27] S. Jia, L. Xia, B. Chen, P. Liu, Deftl: Implementing plausibly deniable
encryption in flash translation layer, in: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, ACM,
2017, pp. 2217–2229.

[28] B. Leiba, Oauth web authorization protocol, IEEE Internet Comput. 16 (1)
(2012) 74–77, http://dx.doi.org/10.1109/MIC.2012.11.

[29] A. Narayanan, V. Shmatikov, Fast dictionary attacks on passwords using
time-space tradeoff, in: Proceedings of the 12th ACM Conference on
Computer and Communications Security, ACM, 2005, pp. 364–372.

[30] jthornber, Thin provisioning tools, 2019, https://github.com/jthornber/thin-
provisioning-tools.

[31] Y. Shao, X. Luo, C. Qian, Rootguard: Protecting rooted android phones,
Computer 47 (6) (2014) 32–40.

[32] K. Yaghmour, Embedded Android: Porting, Extending, and Customizing,
O’Reilly Media, Inc., 2013, pp. 245–260.

[33] E. Miles, E. Viola, The advanced encryption standard, candidate pseu-
dorandom functions, and natural proofs, in: Electronic Colloquium on
Computational Complexity, ECCC, 2011, p. 226.

[34] Wikipedia, Dd (UNIX), 2019, https://en.wikipedia.org/wiki/Dd_(Unix),
(Accessed 20 September 2019).

[35] R. Coker, Bonnie++ file-system benchmark, 2019, http://www.coker.com.
au/bonnie+.

[36] J.-M. Kim, J.-S. Kim, Androbench: Benchmarking the storage performance
of android-based mobile devices, in: Frontiers in Computer Education,
Springer, 2012, pp. 667–674.

[37] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, L. Vivier, The new
ext4 filesystem: current status and future plans, in: Proceedings of the
Linux Symposium, vol. 2, 2007, pp. 21–33.

[38] T.-Y. Chen, Y.-H. Chang, S.-H. Chen, N.-I. Hsu, H.-W. Wei, W.-K. Shih,
On space utilization enhancement of file systems for embedded storage
systems, ACM Trans. Embedded Comput. Syst. (TECS) 16 (3) (2017)
83:1–83:28.

[39] Linux Kernel Organization, The kernel documentaion of thin provi-
sioning, 2019, https://www.kernel.org/doc/Documentation/device-mapper/
thin-provisioning.txt, [Online; Accessed 7 August 2019].

[40] Erik Andersen, Busybox, 2019, https://busybox.net, (Accessed 20 December
2019).

[41] N. Tolia, D.G. Andersen, M. Satyanarayanan, Quantifying interactive user
experience on thin clients, Computer 39 (3) (2006) 46–52.

[42] K. Qian, L. Yi, J. Shu, Thinstore: Out-of-band virtualization with thin
provisioning, in: 2011 IEEE Sixth International Conference on Networking,
Architecture, and Storage, 2011, pp. 1–10, http://dx.doi.org/10.1109/NAS.
2011.39.

Wendi Feng is a Ph.D. candidate with Professor Jun-
liang Chen at State Key Laboratory of Network and
Switching Technology at Beijing University of Posts and
Telecommunications. His is also jointly advised by Prof.
Zhi-Li Zhang at the University of Minnesota Twin Cities.
His research interests include mobile computing, cloud
computing, computer networking, software-defined
network, and network function virtualization.

Chuanchang Liu is currently an Associate Professor
with the State key Laboratory of Networking and
Switching Technology, Beijing University of Posts and
Telecommunications. His current research interests in-
clude mobile device security, cloud computing, and
oriented-service computing.

Zehua Guo received a B.S. degree from Northwestern
Polytechnical University, an M.S. degree from Xidian
University, and a Ph.D. degree from Northwestern Poly-
technical University. He is an Associate Professor at
the Beijing Institute of Technology. He was a Research
Fellow at the Department of Electrical and Computer
Engineering, New York University Tandon School of
Engineering, a Post-Doctoral Research Associate at the
Department of Computer Science and Engineering,
University of Minnesota Twin Cities, and a Visiting
Associate Professor at Singapore University of Technol-

ogy and Design. His research interests include software-defined networking,
network function virtualization, data center network, cloud computing, content
delivery network, network security, machine learning, and Internet exchange.
Dr. Guo is an Associate Editor for IEEE ACCESS and the EURASIP Journal on
Wireless Communications and Networking (Springer), and an Editor for the KSII
Transactions on Internet and Information Systems. He was the Session Chair for
the IEEE International Conference on Communications 2018 and the Technical
Program Committee Member of Computer Communications (Elsevier). He is a
Senior Member of IEEE.

Thar Baker is Senior Lecturer in Software Systems
Engineering, Head of Computer Science Research Group
and member of Applied Computing research group
in Liverpool John Moores University, UK. Thar has
published numerous referred research papers in multi-
disciplinary research areas including: Cloud Computing,
algorithm design, SDN and IoT. He has been actively
involved as a member of editorial board and review
committees for a number international journals and
conferences.

http://refhub.elsevier.com/S0167-739X(19)32521-X/sb8
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb8
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb8
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb8
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb8
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb8
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb8
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb9
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb9
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb9
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb9
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb9
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb10
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb10
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb10
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb11
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb11
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb11
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb11
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb11
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb13
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb13
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb13
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb13
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb13
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb13
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb13
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb14
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb14
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb14
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb14
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb14
http://www.truecrypt.org/
http://www.truecrypt.org/
http://www.truecrypt.org/
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb16
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb16
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb16
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb16
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb16
https://technet.microsoft.com/en-us/library/cc732774(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/cc732774(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/cc732774(v=ws.11).aspx
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb18
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb19
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb20
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb21
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb21
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb21
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb22
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb22
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb22
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb22
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb22
https://www.usenix.org/conference/foci19/presentation/barker
https://www.usenix.org/conference/foci19/presentation/barker
https://www.usenix.org/conference/foci19/presentation/barker
https://en.wikipedia.org/wiki/FreeOTFE/
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb26
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb26
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb26
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb26
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb26
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb26
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb26
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb27
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb27
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb27
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb27
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb27
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb27
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb27
http://dx.doi.org/10.1109/MIC.2012.11
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb29
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb29
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb29
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb29
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb29
https://github.com/jthornber/thin-provisioning-tools
https://github.com/jthornber/thin-provisioning-tools
https://github.com/jthornber/thin-provisioning-tools
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb31
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb31
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb31
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb32
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb32
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb32
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb33
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb33
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb33
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb33
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb33
https://en.wikipedia.org/wiki/Dd_(Unix)
http://www.coker.com.au/bonnie+
http://www.coker.com.au/bonnie+
http://www.coker.com.au/bonnie+
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb36
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb36
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb36
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb36
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb36
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb37
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb37
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb37
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb37
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb37
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb38
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb38
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb38
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb38
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb38
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb38
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb38
https://www.kernel.org/doc/Documentation/device-mapper/thin-provisioning.txt
https://www.kernel.org/doc/Documentation/device-mapper/thin-provisioning.txt
https://www.kernel.org/doc/Documentation/device-mapper/thin-provisioning.txt
https://busybox.net
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb41
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb41
http://refhub.elsevier.com/S0167-739X(19)32521-X/sb41
http://dx.doi.org/10.1109/NAS.2011.39
http://dx.doi.org/10.1109/NAS.2011.39
http://dx.doi.org/10.1109/NAS.2011.39


W. Feng, C. Liu, Z. Guo et al. / Future Generation Computer Systems 109 (2020) 158–171 171

Gang Wang received his B.Eng. in electrical engineering
and automation from the Beijing Institute of Technol-
ogy, Beijing, China, in 2011, and his Ph.D. in electrical
and computer engineering from the University of Min-
nesota, Minneapolis, MN, USA, in 2018. He is currently
a postdoctoral associate in the Department of Electrical
and Computer Engineering at the University of Min-
nesota.

His research interests focus on the areas of statis-
tical signal processing, optimization, and deep learning
with applications to data science and smart grids. He

received a National Scholarship (2013), a Guo Rui Scholarship (2015), and an
Innovation Scholarship (first place in 2017), all from China, as well as the Best
Student Paper Award at the 2017 European Signal Processing Conference.

Meng Wang received the B.S. degree from Beijing
Jiaotong University, Beijing, China, in 2016. He is cur-
rently pursuing the Ph.D. degree with the State Key
Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications,
Beijing. His current research interests include network
function virtualization, network slicing and resource
allocation managements.

Bo Cheng is currently a Professor and vice director
with the State key Laboratory of Networking and
Switching Technology, Beijing University of Posts and
Telecommunications. His current research interests in-
clude mobile device security, cloud computing, internet
of things and big data analysis, network service and
intelligence.

Junliang Chen is currently a Professor and the Aca-
demic Leader with the State key Laboratory of Net-
working and Switching Technology, Beijing University
of Posts and Telecommunications. He is a member
of the Chinese Academy of Science and the Chi-
nese Academy of Engineering, and a fellow of the
China Computer Federation. His current research in-
terests include service-oriented computing and service
generation system.


	MobiGyges: A mobile hidden volume for preventing data loss, improving storage utilization, and avoiding device reboot
	Introduction
	Related works
	Full disk encryption
	Plausibly deniable encryption
	Steganography
	Hidden volume
	Functionality comparison


	Threat model and system assumptions
	Novel PDE oriented attacks
	Capacity comparison attack
	Fill-to-full attack

	Mobigyges design
	Design considerations
	Design overview
	Solutions
	Key components
	User steps

	The volume management module
	Volume management module circumvention
	Volume management module composition
	TriggerApp


	Implementation
	Evaluation
	Performance evaluation tools
	Storage utilization evaluation
	Performance overhead evaluation
	Performance overhead comparison

	Discussion
	Security discussion
	Drawbacks and future works

	Conclusion
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	References


