
BAGUETTE: Towards a Secure and Cost-effective
Switch Upgrade in Hybrid Software-Defined

Networks
Wendi Feng∗, Zehua Guo†, Chuanchang Liu∗, Yueming Zheng‡, Meng Wang∗, Bo Cheng∗, and Junliang Chen∗

∗Beijing University of Posts and Telecommunications
†Beijing Institute of Technology, ‡ Trinity College Dublin

Abstract—Software-Defined Networking (SDN), providing flex-
ible controlling and monitoring mechanisms that simplifies
network management, is becoming prevalent in recent years.
However, replacing all legacy network devices with SDN-capable
devices is cost-prohibitive. One practical approach for the SDN
deployment is to incrementally upgrade a few legacy devices
to SDN devices. The network, which consists of legacy and
SDN devices, is called a hybrid SDN. Existing hybrid SDN
deployment schemes do not consider the security impact of device
deployment. They use the same type of devices to upgrade, and
upgraded devices could be compromised if an attacker controls
one SDN device by leveraging its vulnerabilities.

In this paper, we consider this security issue in the hybrid
SDN deployment and present the Secure and Cost-effective
Switch Upgrade (SCESU) problem. The SCESU problem aims to
upgrade a few network devices to satisfy the security requirement
by using multiple SDN switch types with a minimal upgrade
cost. The complexity of the SCESU problem comes from common
vulnerabilities shared among different types of SDN devices and
attack propagations among network nodes. To efficiently solve
the problem, we propose the BAGUETTE algorithm to judiciously
choose and upgrade critical legacy switches with selected SDN
devices. Simulation results show that BAGUETTE achieves up
to about 92.1% security enhancement compared with legacy
network and reduces to 11.1% cost of the securest deployment.

Index Terms—SDN, Hybrid SDN deployment, security, attack
mitigation.

I. INTRODUCTION

Software-defined Networking (SDN) [1] is a prevalent net-
working technology, which decouples the control plane and
data plane of network devices (i.e., SDN switches) and allows
innovations to be easily applied. It also simplifies network
management with the fine-grained network controlling and
monitoring mechanisms. Owning to the advantages, SDN
plays an important role in Cloud Computing [2], Edge Com-
puting [3], 5G [4], and Fog Computing [5]. Many industrial
companies, such as Google [6] and Facebook [7], have started
deploying SDN in their production environments. AT&T, as
one of the biggest Internet Service Providers (ISP), also plans
to increase the SDN deployment to 75% by 2020 [8].

This work is supported in part by the National Key Research and Devel-
opment Program of China under Grant 2018YFB1003804, Natural Science
Foundation of China under Grant 61921003, Beijing Institute of Technology
Research Fund Program for Young Scholars, and China Scholarship Council
under Grant 201806470060. We would also thank Gang Wang, Sen Liu and
the anonymous reviewers for their valuable comments and suggestions.

SDN deployment is a long way to go because replacing
all legacy devices with SDN devices is cost-prohibitive. One
practical way to deploy SDN is to incrementally upgrade a
few legacy devices to SDN devices, which makes the network
a hybrid SDN [9], [10], [11], [12].

Typically, existing works consider many constraints (e.g.,
upgrade budget [11], flow programmability [13], [14]) for
the SDN device upgrade. However, they use only one type
of SDN devices and do not consider the security impact of
device deployment. If the attacker controls one device by
leveraging its vulnerabilities, other devices with the same type
can also be compromised. For example, a zero-day attack can
exploit a vulnerability of a switch type and construct a special
packet that can overflow its memory buffer and controls the
switch [15]. When controlling one switch, the attacker can then
broadcast the attack packet to all its neighbors. If neighbors
use the same switch type, they also have the vulnerability and
can thus be leveraged by the attacker and compromised.

The question is whether we can mitigate attacks and make
the network resilient to attacks by using devices with different
vulnerabilities in the hybrid SDN deployment? The answer is
yes. Devices have defects1, but each attack may only leverage
one or a few specific defects. If using a device whose defects
that cannot be leveraged by the attack, the attack cannot
compromise the device.

Simply using different switch types at each network node
can be either unnecessary or insufficient in the hybrid SDN
deployment. The upgrade cost will be exorbitant since this
often upgrades more switches than needed and increases the
expense when the security level has already been satisfied
(depicted in Fig. 1). Security may fail to be provided because
common vulnerabilities reside in multiple switch types. Thus,
the attack can still propagate and compromise the network.

Inspired by the above observation, we present the Secure
and Cost-effective Switch Upgrade (SCESU) problem in this
paper, which jointly considers security and upgrade cost in
the hybrid SDN deployment. In a nutshell, SCESU aims
to use a few SDN devices to upgrade legacy devices to
satisfy the security requirement with a minimal upgrade cost.
The complexity of the problem is resulting from common

1Including those undisclosed. We use defects, flaws, vulnerabilities inter-
changeably throughout this paper.

978-1-7281-5089-5/20/$31.00 ©2020 IEEE

(a) Upgrading switch v1, v2,
and v6 with the same switch
type, but the attack can com-
promise them.

(b) Arbitraily deploy two
types of SDN switches. 3 de-
vices are compromised.

(c) Choose different types for
each SDN switch.

(d) v1, v3, and v6 use diff.
types, but the switch types
share common vulnerabilities.
They are still compromised.

(e) Upgrade the switches with
security guarantee and cost
awareness.

Fig. 1: Motivation examples demonstration. Unsuccessful attack propagation is omitted for a clearer illustration.

vulnerabilities of switch types and attack propagations among
network nodes. We propose an efficient heuristic algorithm
called BAGUETTE to solve the problem. It judiciously chooses
a small portion of the legacy devices and upgrades them
with smartly selected device types. Simulation results show
that the proposed BAGUETTE algorithm achieves a near-
optimal performance and achieves up to about 92.1% security
enhancement and reduces to 11.1% cost of the most secure
method.

In summary, our contribution is three-fold, as follows.
• We consider the security impact of SDN device deploy-

ment in hybrid SDN, and mathematically formulate the
SCESU problem.

• We propose BAGUETTE to efficiently solve the SCESU
problem, which satisfies the security requirement with a
minimal upgrade cost.

• We evaluate BAGUETTE under various real-world topolo-
gies and compare them with baseline algorithms. Simula-
tion results show that BAGUETTE achieves near-optimal
performance.

The rest of this paper is organized as follows. §II introduces
the most relevant related works, and §III mathematically for-
mulates the SCESU problem. In §IV, we propose BAGUETTE
to efficiently solve the SCESU problem. §V describes the
simulation setup and compares BAGUETTE with baseline
algorithms. §VI concludes the paper.

II. RELATED WORKS
SDN switch upgrade has attracted a plethora of research stud-
ies in recent years, too numerous to be discussed fully here,
and thus we will focus on those that are most relevant. Jin et
al. [9] propose a unified SDN controller that exerts SDN-like,
fine-grained path control over both SDN and legacy switches.
Hong et al. [11] present a systematic incremental SDN de-
ployment methodology and hybrid operation model to decide
which device to upgrade to SDN and how legacy and SDN
devices cooperate in the hybrid environment. Guo et al. [16]
propose a novel incremental SDN switch upgrade scheme,
which aims to lower the latency of controller processes and
the propagation delay of flow requests due to improper multi-
controller deployment. Jia et al. [12] advocate considering how
to maximize the network control ability with a given upgrading

TABLE I: Notation Definitions.

Notation Description
V The network node set. V = {v1, v2, . . . }.
S The switch type set. S = {s1, s2, . . . }.

C The cost set. Costs of upgrading a node to each switch type.
C = {c1, c2, . . . }.

xij Node vi is uses type sj .
Fj Switch type sj ’s vulnerabilities. Fj =

{
fj
1 , f

j
2 , . . . , f

j
lj

}
.

Aj The attack set of the switch type sj . A = {a1, a2, . . . }.
Pj The attack probability of switch type sj .

X
The switch type mapping scheme. xij ∈ X, ∀vi ∈ V, ∀sj ∈
S.

e(X)
The compromising expectation of the SDN network under
upgrade scheme X .

Emax The maximum compromising expectation provided by network
operator.

V∗ak
i The compromising sub-graph nodes set.

r
ak
i (X)

The compromised ratio under the upgrade scheme X and
attacked by attack ak when network node vi is the entry node.

budget constraint, and minimize the upgrading cost to achieve
the best network control ability. Levin et al. [10] propose an
optimization framework to determine the partial SDN upgrade
and assumes that at least one SDN switch is traversed by each
network flow. However, none of the aforementioned works
considers the security impact when upgrading switches to
SDN switches. BAGUETTE satisfies the security requirement
by mitigating the attack at the very initial node after entering
the network and achieves the minimal overall cost with smartly
selected switch types.

III. PROBLEM FORMULATION

In this section, we first mathematically present the network
system description and then propose security metrics to de-
scribe the possibility of compromising the network. We further
introduce constraints and the objective function of the SCESU
problem. Finally, we formulate it as an optimization problem.
A. System Description
We mathematically formulate the network in this subsection.
Notation definitions can be found in TABLE I.

A network can be represented as a graph G = (V, E),
where V = {v1, v2, . . . } is the set of network nodes, and vi
represents the ith node in the network, and E is the links set.
Each node in V can choose multiple switch types to upgrade.
Let S = {s1, s2, . . . } represents the switch type set. In the
default setting, all nodes are deployed with a legacy switch.

v1
v2

(a) The network con-
sists of 3 switch types
(shown as black, gray,
and white).

v1
v2

Compromise
 sub-graph

(b) An attack compro-
mises gray type nodes
and enters at v2.

v1
v2

Compromise
 sub-graph

(c) An attack compro-
mises black type nodes,
and enters v1.

Fig. 2: Compromising sub-graph demonstration. In Fig. 2b,
the compromising sub-graph only contains v2, and the com-
promised ratio is 1

6 . In Fig. 2c, the compromising sub-graph
contains v1, v3, and v6, and the compromised ratio is 3

6 = 1
2 .

Different switch types have different upgrade costs, and the
cost of legacy switches are 0. Let C = {c1, c2, . . . , } represents
the cost of upgrading to each switch type. We use xij = 1 to
indicate network node vi is deployed with switch type sj , and
otherwise xij = 0.
B. Attack Metrics
In this subsection, We introduce probability-based security
metrics to measure the security of the network. Specifically, we
use attack probability to measure the possibility of compromis-
ing a specific switch type by an attack. We then consider the
influence of attack propagation with the switch compromised
ratio. Finally, we present the compromising expectation to
evaluate the overall compromising expectation of the network.
1) Attack Probability
Each SDN switch type has multiple vulnerabilities. Let Fj ={
f j
1 , f

j
2 , . . . , f

j
lj

}
be the set of all vulnerabilities of type sj ,

where lj is the number of vulnerabilities of type sj . Let F =∪
j Fj be the total vulnerability set, and let A = {a1, a2, . . . }

be the attack set. The attack set contains all possible public
known attacks and unpublished attacks based on the network
operator’s previous experiences. Each attack can exploit one
or more vulnerabilities, so each attack ak is a subset of the
vulnerability set F (exclude ∅), and thus, the total number of
attacks is 2|F| − 1. If attack ak can exploit the vulnerability
that switch type sj has, then type sj is compromised by attack
ak.

The attack probability of switch type sj is the ratio of the
number of attacks that can compromise the type to the total
number of attacks. It is formulated as

Pj =

∣∣∣∣∣ ∪
ak∩Fj ̸=∅

{ak}

∣∣∣∣∣
|A|

. (1)

2) Switches Compromised Ratio
An attack can traverse from one node to another, if these nodes
are adjacent to each other and have the same type of device or
share common vulnerabilities. We present the concept of the
compromising sub-graph to identify the possible compromised
switches of given entry network node vi and attack ak. The
compromising sub-graph is generated by 2 steps. i) Adjusting
the adjacency matrix of the network graph, by removing the

nodes in the adjacency matrix whose type’s vulnerabilities
have no intersection with attack ak. ii) Traversing the graph
with the adjusted adjacency matrix by using breadth-first
search (BFS) to get all the switches that can be reached in
the graph traversal. Then, we get G′ak

i = (V ′ak

i , E ′ak

i), which
is the generated compromising sub-graph. Fig. 2a depicts a
network with 6 switches where v1, v3, v6 use the ”black” type;
and v2, v4 use the ”gray” type; and v5 use the ”white” type.
In Fig. 2b, v2 is the only element in V ′a1

2 . And in Fig. 2c,
V ′a2

1 contains v1, v3, v6. The switch compromised ratio is
formulated as

rak
i (X) =

∣∣V ′ak

i

∣∣
|V|

. (2)

3) Compromising Expectation
In this subsection, we propose the compromising expectation to
measure the overall compromising possibility of the network.
The compromising expectation is formulated as a mathemati-
cal expectation shown below

e(X) =
1

|V|
∑
vi∈V

∑
ak∈A

∑
sj∈S

rak
i (X)Pjxij , (3)

where rak
i (X) is the switches compromise ratio of switch vi

under attack ak, and Pj is the attack probability of switch type
sj under all attacks.
C. Constraints
1) Maximum Compromising Possibility
Security requirements may vary between network to network
based on their business. Therefore, a minimum security level,
or put another way, a maximum compromising possibility can
be set by the network operator to guarantee the least security
requirement of the network. Thus we have

1

|V|
∑
vi∈V

∑
a∈A

∑
sj∈S

rai (X)Pjxij ≤ Emax, (4)

where Emax is the maximum required compromising possi-
bility of the network.
2) Single Switch Type Constraint
Only one switch type can be used for each node in the network.
The constraint is written as∑

sj∈S

xij = 1,∀vi ∈ V. (5)

D. Objective Function
Our objective is to minimize the overall cost of switch type
mapping for each node in the network. Therefore, the objective
function is written as follows

obj =
∑
vi∈V

∑
sj∈S

xijcj . (6)

E. Problem Formulation
The goal of the SCESU problem is to find an optimal switch
type mapping scheme between network nodes in V and types
in S by judiciously placing the suitable type to the switch, thus
reaching the target of minimizing the overall cost under the

security requirement. Consequently, we formulate the SCESU
problem as follows:

min
x

∑
vi∈V

∑
sj∈S

xijcj

s.t.(4)(5),
xij ∈ {0, 1} ,
vi ∈ V, sj ∈ S

(P)

where {cj} are constants, and {xij} are designed variables.
In the SCESU problem, the objective function is linear, and
variables are binary integers. Thus, this problem is an Integer
Linear Programming (ILP) problem.

IV. PROBLEM SOLUTION
The complexity of the SCESU problem comes from both the
attack can propagate among network nodes, and vulnerabilities
can share between switch types. This section presents an
efficient heuristic algorithm called BAGUETTE to solve it.

The idea behind the BAGUETTE algorithm is by upgrading
critical nodes in the network to SDN switches with different
types to mitigate attacks. If critical switches are adjacent to
each other, they should use different switch types with the
highest vulnerability differentiation, which prevents the attack
from propagating. BAGUETTE follows three steps to solve the
problem as follows.

(1) Preparing critical network nodes. BAGUETTE identi-
fies critical network nodes based on their degrees and stores
the critical network nodes in an array in the order of each node
should be processed. This is achieved by sorting the network
nodes based on their degrees in descendent order.

(2) Preparing switch type candidates. One target of the
SCESU problem is to minimize the upgrade cost. To this
end, BAGUETTE sorts the types based on their costs from
low to high, which ensures cheaper types can be prioritized
considered in the mapping procedure.

(3) Mapping switch types. BAGUETTE repeatably picks a
critical node from the sorted critical network node array and
selects a switch type for it until the whole network satisfies the
security requirement. BAGUETTE maintains a globally current
minimum security mapping variable and compares its compro-
mising expectation with each new mapping’s expectation in
the process. This is helpful to get the minimum compromise
expectation of all tested mappings when BAGUETTE cannot
satisfy the security requirement. The switch type selection
procedure has the following six subroutines. i) Get all types
of the current selected node’s adjacent nodes. ii) Calculate a
new array of switch types, by removing the adjacent switch
types, represented as S ′. iii) Get the common vulnerabilities
of the adjacent switches as F ′. iv) For each type sj in S ′,
calculate the vulnerability variation that is the percentage of
the number of common vulnerabilities between Fj and F ′,
over the number of vulnerabilities of Fj . v) Map the type
with the lowest vulnerability variation calculated in Step iv) to
the critical node. vi) Calculate the compromising expectation
of the network, if the value satisfies the requirement, stop;
otherwise, pick the next critical switch and go to Step i).

Algorithm 1: The BAGUETTE algorithm.
Input: G, S
Output: X
/* Preparing the critical switch

candidates */
1 N ← |V|;
2 Matrix← getAdjacencyMatrix(G);
3 D ← ∅;
4 Xmin ← X , expectmin ←∞;
5 for i← 1 to N do
6 D ← D ∪ (

∑N
i1
Matrixi,i1);

7 Generating vector V ′ = {vi, i ∈ [1, N]} by sorting the
degree of each switch Di in descending order;
/* Preparing switch types */

8 C ←getSwitchCost(V);
9 Generating vector S ′ = {sj , j ∈ [1, |S|]} by sorting the

cost of each switch type Cj in ascending order;
/* Mapping switch types */

10 for vi ∈ V ′′ do
11 Adj ← getAdjacent(vi);
12 F ′ ← ∅, S1 ← ∅;
13 for vi1 ∈ Adj do
14 F ′ ← F ′∪ getVulnerability(vi1);
15 S1 ← S1∪ getSwitchType(vi1);

16 S ′′ ← S ′ \ S1;
17 min ratio← 1, jmin ← 0;
18 for sj ∈ S ′′ do
19 ratio← Fj∩F ′

F ′ ;
20 if min ratio > ratio then
21 min ratio← ratio, jmin ← j;

22 xi,jmin
← 1;

23 expect←compromiseExpectation(X);
24 if expect ≤ Emax then
25 break;

26 else
27 if expectmin > expect then
28 Xmin ← X;
29 expectmin ← expect;

30 return Xmin

The BAGUETTE algorithm is detailed in Algorithm 1.
Lines 1-7 generate the order of switch to be upgraded to SDN
switches. In Lines 2-6, it first generates the degree vector D
based on the adjacency matrix of the network, and it then sorts
the nodes based on the degree in descending order. Lines 8-9
prepare the different switch types by sorting the types based on
the cost of each type. We use quicksort to sort the types’ costs.
Lines 10-29 map types to switches. The key idea is to choose
the type that has the biggest vulnerability differentiation of all
adjacent switches. The cost of the upgrade is considered when
multiple type candidates have the same vulnerability variation,
and we choose the one with a smaller cost. Lines 11-15 get all

(a) The security comparison under Heanet (non-full
mesh topology). The lower the better.

(b) The security comparison under Arpanet (non-
full mesh topology). The lower the better.

(c) The security comparison under GlobalCenter
(full mesh topology). The lower the better.

(d) The cost comparison under Heanet (non-full
mesh topology). The lower the better.

(e) The cost comparison under Arpanet (non-full
mesh topology). The lower the better.

(f) The cost comparison under GlobalCenter (full
mesh topology). The lower the better.

Fig. 3: Legacy, Optimal, BAGUETTE, and SecurityMost performances under different security requirements. BAGUETTE
achieves near-optimal performance under non-full mesh topologies.

the types and vulnerabilities of adjacent switches. Lines 16-21
calculate the ratio of common vulnerabilities of current type
and adjacent switches’ types to the vulnerabilities of adjacent
switches’ types. We choose the type with the minimum ratio.
Finally, we calculate the compromise expectation based on the
current mapping X . If the mapping satisfies the requirement,
the algorithm stops; otherwise, it keeps mapping the next
switch until all candidates are processed.

V. SIMULATION RESULTS
This section presents the simulation of BAGUETTE. First,
we introduce the simulation setup information. Then, we
present the comparison algorithms. Finally, we compare the
performances of different algorithms under various real-world
topologies. We find our BAGUETTE algorithm performs a near-
optimal performance under non-full mesh toplogies.
A. Simulation Setup
We conduct simulations on all Topology Zoo [17] topologies,
but due to the space limitation, we only demonstrate results of
Arpanet [18], GlobalCenter [19], and HEAnet [20]. Topology
Zoo is a collection of 262 real-world backbone network
topologies, and each topology is provided with a gml file. We
use a popular python graph library python-igraph [21]
to read gml files. Arpanet and GlobalCenter both have 9
nodes, and GlobalCenter is a full-meshed network with 36
links. HEAnet has 7 nodes. In the simulation, each node in
the topology has only one switch, it can be either a traditional
switch or an SDN switch. There are 4 types in total. We treat
the traditional switch as a special switch type s1. Each switch

type contains multiple vulnerabilities in the simulation, we
randomly generate vulnerabilities for each switch type, and
the number of vulnerabilities is random in the range of (0, 6).
Besides, we have surveyed many SDN switches from [22],
and the prices of popular SDN switches range from $1000 to
$5000. Thus, we randomly generate a cost for every switch
type in the range of (1000, 5000). We generate attacks by
calculating the subset of total vulnerability set F , and the total
number of attacks is 26 − 1 (empty set is removed). We use
Python to implement the simulation.
B. Compared Algorithms
We compare the following algorithms.
• Legacy: this is the default switch type deployment where all

network nodes are deployed with legacy switches.
• Optimal: this is the optimal solution of the SCESU prob-

lem which minimizes the overall switch upgrade cost un-
der certain network security requirements. Since Equa-
tion 2 requires graph traversal. Common ILP solvers like
GUROBI [23] cannot help. We use brutal force method to
solve the problem.

• SecurityMost: this solution calculates the switch upgrade
scheme with the minimum compromise expectation. We also
use brutal force method to solve it due to the same reason.

• BAGUETTE: this algorithm is shown in Algorithm 1.
C. Simulation Results
We compare the security and overall cost performances of
Legacy, Optimal, BAGUETTE, and SecurityMost algorithms
under different security (compromise expectation) require-

ments ranging from 0.1 to 0.9. Due to the complexity of
Optimal and SecurityMost, we do not use larger topology
since they are time-consuming in large topologies. While
BAGUETTE is tolerable to all scale of topologies because its
time complexity is a polynomial.

Fig. 3 shows the security and cost performances of the 4
algorithms under the 3 topologies. In a nutshell, BAGUETTE
achieves up to approximately 92.1% security enhancement
compared with the legacy setup and as low as 11.1%
cost of SecurityMost. Legacy has no security guarantee,
and SecurityMost can stop all attacks while introduces an
exorbitant cost. In Figs. 3a, 3b, and 3c, Optimal satisfies all
the security requirements in each tested topology. BAGUETTE
satisfies 100% tests on HEAnet and approximately 80%
tests on Arpanet. However, it does not perform well on
GlobalCenter when the security requirement is strict (low com-
promise expectation). Fig. 3c shows that BAGUETTE fails to
satisfy the security requirement when the required compromise
expectation is below 0.7. This is because BAGUETTE prefers
to choose nodes with the most number of degrees to upgrade,
but GlobalCenter network is a full-meshed network, and the
number of degrees of each node is the same. To this end,
BAGUETTE can only sequentially upgrade nodes one by one
until all 3 SDN switch types are used, and hence fails to
provide an efficient way to upgrade full-meshed networks.

To better understand the performance between Optimal and
BAGUETTE, we define Performance Likelihood (PL) as the
absolute difference between two algorithms over the difference
of the minimum and maximum performances.

PL =
|pA1 − pA2 |
|pmax − pmin|

, (7)

where, pA1
and pA2

are the performances of algorithms A1

and A2, and pmax and pmin are the maximum and minimum
performances. The performances are retrieved at the same x-
scale value in a experimental result figure. For example, the
security PL of BAGUETTE and Optimal is represented as the
absolute difference of compromise expectations of BAGUETTE
and Optimal over the absolute difference of compromise
expectations of Legacy and SecurityMost. A PL is a floating
number between 0 and 1. If the performances are similar, the
value approaches to 0.

Fig. 3 shows that the average security PL is 0.12, and
BAGUETTE and Optimal have the same security performance
in 46.7% of all the tests. In Figs. 3e, 3f, and 3d, the cost
PL between Optimal and BAGUETTE is 0.11, and BAGUETTE
and Optimal have the same cost performance in 42.8% of all
the tests. We can conclude that BAGUETTE achieves near-
optimal performance under non-full mesh topologies.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we have identified the SCESU problem in the
hybrid SDN deployment, which aims to achieve the security
requirement with a minimal cost. We have proposed the
BAGUETTE algorithm, which solves the problem by judi-
ciously choosing critical switches and upgrading them with
selected SDN devices to mitigate the attack propagations. We

have conducted simulations with real-world topologies, and
experimental results have shown that BAGUETTE achieves
a near-optimal performance under non-full mesh topologies
with up to about 92.1% security enhancement and down
to 11.1% cost of the most secure algorithm. By presenting
BAGUETTE, we hope it can bring benefits to both industry and
academia world when deploying SDN and inspire researchers
to take advantage of the hybrid SDN. We will further improve
BAGUETTE to achieve better performance on full-mesh and
spine-leaf topologies whose nodes have the same degree.

REFERENCES
[1] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,

S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[2] B. Hayes, “Cloud computing,” CACM, vol. 51, no. 7, pp. 9–11, 2008.
[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision

and challenges,” IEEE IOT Journal, vol. 3, no. 5, pp. 637–646, 2016.
[4] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,

“Five disruptive technology directions for 5g,” IEEE communications
magazine, vol. 52, no. 2, pp. 74–80, 2014.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of MCC’12. ACM, 2012,
pp. 13–16.

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” in Proceedings of SIGCOMM’13. ACM, 2013, pp. 3–14.

[7] S. Choi, B. Burkov, A. Eckert, T. Fang, S. Kazemkhani, R. Sherwood,
Y. Zhang, and H. Zeng, “Fboss: Building switch software at scale,” in
Proceedings of SIGCOMM’18. ACM, 2018, pp. 342–356.

[8] AT&T, “First in the U.S. to Mobile 5G – What’s Next? Defining AT&T’s
Network Path in 2019 and Beyond,” https://about.att.com/story/2019/
2019 and beyond.html, 2019.

[9] C. Jin, C. Lumezanu, Q. Xu, H. Mekky, Z.-L. Zhang, and G. Jiang,
“Magneto: Unified fine-grained path control in legacy and openflow
hybrid networks,” in Proceedings of SOSR’17. ACM, 2017, pp. 75–87.

[10] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann,
“Panopticon: Reaping the benefits of incremental SDN deployment in
enterprise networks,” in USENIX ATC’14. Philadelphia, PA: USENIX
Association, Jun. 2014, pp. 333–345.

[11] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, “Incremental
deployment of sdn in hybrid enterprise and isp networks,” in SOSR’16.
ACM, 2016, pp. 1:1–1:7.

[12] X. Jia, Y. Jiang, and Z. Guo, “Incremental switch deployment for hybrid
software-defined networks,” in IEEE LCN’16, Nov 2016, pp. 571–574.

[13] K. Poularakis, G. Iosifidis, G. Smaragdakis, and L. Tassiulas, “Optimiz-
ing gradual sdn upgrades in isp networks,” IEEE/ACM TON, vol. 27,
no. 1, pp. 288–301, 2019.

[14] Z. Guo, W. Feng, S. Liu, W. Jiang, Y. Xu, and Z. Zhang, “Retroflow:
maintaining control resiliency and flow programmability for software-
defined wans,” in Proceedings of IWQoS 2019, 2019, pp. 1:1–1:10.

[15] P. J. Schweitzer and S. S. Lam, “Buffer overflow in a store-and-forward
network node,” IBM J. RES. DEV., vol. 20, no. 6, pp. 542–550, 1976.

[16] Z. Guo, W. Chen, Y. Liu, Y. Xu, and Z. Zhang, “Joint switch upgrade
and controller deployment in hybrid software-defined networks,” IEEE
JSAC, vol. 37, no. 5, pp. 1012–1028, May 2019.

[17] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE JSAC, vol. 29, no. 9, pp. 1765–1775,
October 2011.

[18] Topology Zoo, “Arpanet 1970-6,” http:// topology-zoo.org/maps/
Arpanet19706.jpg, 2019.

[19] The Center, LLC, “The Global Center for Nonprofit Excellence,” https:
//www.theglobalcenter.net, 2019.

[20] HEAnet, “HEAnet - Ireland’s National Research & Education Network,”
https://www.heanet.ie, 2019.

[21] G. Csardi, T. Nepusz et al., “The igraph software package for complex
network research,” InterJournal, Complex Systems, vol. 1695, no. 5, pp.
1–9, 2006.

[22] “Router-Switch.com, leading network hardware supplier.” https://www.
router-switch.com, accessed: 2019-08-20.

[23] Gurobi, “Gurobi optimizer,” Gurobi: http://www.gurobi.com, 2019.

	Select a link below
	Return to Previous View
	Return to Main Menu

