
STATOEUVER: State-aware Load Balancing
for Network Function Virtualization

Wendi Feng∗, Ranzheng Cao∗, and Zhi-Li Zhang†
∗Beijing Information Science and Technology University

†University of Minnesota – Twin Cities
I. INTRODUCTION

By running network functions as software on commodity
servers instead of on expensive dedicated hardware middle-
boxes, network function virtualization (NFV) offers many
benefits. It provides flexible control and management of net-
work functions (NFs), and it lowers network management
and deployment costs. In particular, NFV makes it easier
and cheaper to scale out to meet growing traffic demands by
deploying NF instances on more CPU cores, hence has been
widely touted as the future of networking.

These benefits notwithstanding, recent studies show NF
states play critical roles in retaining peak performance [1], [2].
Using a simple synthesized NF as an example, a network mon-
itor (NM) maintains a state variable (a counter) to record the
number of packets received. However, balancing virtualized
NF (VNF) instance loads with the awareness of states (NFV-
SLB) is challenging because correctness must be guaranteed
without compromising performance. In particular, when traffic
is dispatched to multiple NM instances, the counter is shared
across instances and accessed exclusively. Thus, significant
performance penalty encounters (see Sec. II-B).

State-of-the-art NFV load balancers are either stateless load
balancing based purely on the packet fields (e.g., Sprayer [3])
or load-state scheme that each instance can only access state
locally (e.g., RSS++[4]). However, state access patterns by
various NFs and the flow granularity of different NFs are
neglected but yet critical. In this paper, we propose STA-
TOEUVER, a state-aware load balancer for NFV. Based on the
findings of our previous NFV profile work [2], it takes state
access patterns, state sizes, the number of live flows, and CPU
loads into account and generates practical traffic dispatching
rules for efficient traffic steering along with state-aware VNF
instance load balancing. Our contribution is two-fold:

• We identify and describe the NFV-SLB problem, and
• we present the design of the STATOEUVER load balancer.

II. MOTIVATION

This section motivates the NFV-SLB problem with examples.
From state sizes, shared states, to state access patterns, we
gradually demonstrate issues behind these factors, which con-
sequently contributes a state-aware NFV load balancer that
takes all these factors into consideration and makes a judicious
decision to attain the ultimate performance.
A. State Size Hurts
Fig. 1a depicts the throughput experiments on our testbed of
the Layer-4 load balancer (L4LB)1 as the size of state changes.

1L4LB balances flows based purely on the 5-tuple information.

When the state size increases2 the throughput decreases after
passing the point p1 or p2 in different packet size experiments.
This is due to the cache misses when the state size exceeds
the CPU cache capacity [2]. Finally, the performance stops
decrease as all memory accesses become DRAM-bounded, and
the NF packet processing is significantly impacted.
B. Shared States Pitfalls
Another experiment shows performance penalty resulted from
multiple NF instances accessing a shared state variable. The
same testbed setup is employed, and NM3 is used. As shown
in Fig. 1b, when traffic is “sprayed” to the two instances, each
instance updates the same state variable every time a packet
arrives. Hence, the state variable bounces between the two
instances in the modern hierarchical memory architecture [2],
and cache misses are significant. Thus, we can see from
Fig. 1c, throughput is less than that of a single instance.
Whereas the overall performance of the non-shared state
version observed a linear increase as the number of instances
increase. Unfortunately, the non-shared state version cannot
always guarantee the correctness of NM (as the state on each
NM instance only counts a portion of the whole traffic).
C. State Access Pattern Impacts
So the question is: do NFs always access states on a per-
packet basis? The answer is no. Many NFs (e.g., Firewall,
intrusion detection system, deep packet inspection) access
(especially update) states only a few times each NF flow. In
these cases, completely mitigating shared states can lead to
load imbalance on NF instances, as shown in Fig. 1d, which
compromises the performance. Hence, tradeoffs (see Fig. 1e)
between shared state accesses and the number of instances that
can be employed for processing packets is the key to achieving
the optimal performance (throughput).

III. STATOEUVER DESIGN
This section presents the primary design of STATOEUVER
state-aware network function load balancer. In a word, STA-
TOEUVER determines the number of instances needed and how
traffic should be dispatched to them. Note that a system profile
is necessary in practice but is out of the scope of this paper.
Please refer to our previous work [2] for more details.
A. Workflow Overview
As demonstrated in Fig. 1f, STATOEUVER consists of three key
components, Decision Maker, Rule Keeper, and Dispatcher.

2We use “# of flow entries” to indicate the state size as each state variable
is associated with an L4LB flow (5-tuple flow in this scenario), and hence,
the overall state size is proportion to the number of flows.

3NM counts the number of packets of incoming traffic. In the shared state
version, only one state variable is used (a counter) by all instances. While in
the non-shared state version, each instance has a dedicated state variable.

978-1-6654-0926-1/22/$31.00 ©2022 IEEE

IE
EE

 IN
FO

C
O

M
 2

02
2

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 W
or

ks
ho

ps
 (I

N
FO

C
O

M
 W

K
SH

PS
) |

 9
78

-1
-6

65
4-

09
26

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IN

FO
C

O
M

W
K

SH
PS

54
75

3.
20

22
.9

79
82

28

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on November 10,2022 at 06:44:37 UTC from IEEE Xplore. Restrictions apply.

102 103 104 105 106

States size (# of flow entries)

4

5

6

7

T
h

ro
u

gh
p

u
t

(M
p

p
s)

p1

p2

64B

128B

(a) Performance reduces as the state size increases.

NM
Shared

NM
Shared

Instance 2

Instance 1

State bounce

Flows

(b) Shared state “bounce” at instances.

0 3 6 9 12 15 18 21
Number of instances

25

50

75

100

125

T
hr

ou
gh

pu
t

(M
pp

s)

Non-Shared State

Shared State

(c) Performance penalty resulted from shared states.

NF

NF
State

Instance 2

Instance 1

Elephant Flow

(d) Flow-level steering. Instances can be idle.

NF
State

Instance 2

Instance 1

NF
State Flows

(e) Low frequency access makes shared states
acceptable.

NF
State

Instance n

Instance 1

NF
State

NF
State

Instance 2

ŏ

9
>>>
>>>
>>=
>>>
>>>
>>;

<latexit sha1_base64="QSzVUx3V7nAwd07DAAirMuHpR8Y=">AAACVHicbVFNS8NAEN3E7/hV9ehlsSieSiKKHkUvHhWsCk0pm80kXbrZxN2JUEJ/pB4Ef4kXD27b4Ed1YODx3pud3bdRIYVB339z3Ln5hcWl5RVvdW19Y7OxtX1n8lJzaPNc5vohYgakUNBGgRIeCg0siyTcR4PLsX7/BNqIXN3isIBuxlIlEsEZWqrXGIQRpEJV8FhOmJEXSkiw5dU8kyJVEI+8AxqG3sFseyGo+NsUapH2MbRA5cjSqfp1dK/R9Fv+pOhfENSgSeq67jVewjjnZQYKuWTGdAK/wG7FNAouwW4pDRSMD1gKHQsVy8B0q0koI7pvmZgmubatkE7YnxMVy4wZZpF1Zgz7ZlYbk/9pnRKTs24lVFEiKD5dlJSSYk7HCdNYaOAohxYwroW9K+V9phlH+w+eDSGYffJfcHfUCo5bJzdHzfOLOo5lskv2yCEJyCk5J1fkmrQJJ8/k3SGO47w6H+6cuzC1uk49s0N+lbvxCcSIsTE=</latexit>

Live Instances

9
>>>
>>>
>>=
>>>
>>>
>>;

<latexit sha1_base64="QSzVUx3V7nAwd07DAAirMuHpR8Y=">AAACVHicbVFNS8NAEN3E7/hV9ehlsSieSiKKHkUvHhWsCk0pm80kXbrZxN2JUEJ/pB4Ef4kXD27b4Ed1YODx3pud3bdRIYVB339z3Ln5hcWl5RVvdW19Y7OxtX1n8lJzaPNc5vohYgakUNBGgRIeCg0siyTcR4PLsX7/BNqIXN3isIBuxlIlEsEZWqrXGIQRpEJV8FhOmJEXSkiw5dU8kyJVEI+8AxqG3sFseyGo+NsUapH2MbRA5cjSqfp1dK/R9Fv+pOhfENSgSeq67jVewjjnZQYKuWTGdAK/wG7FNAouwW4pDRSMD1gKHQsVy8B0q0koI7pvmZgmubatkE7YnxMVy4wZZpF1Zgz7ZlYbk/9pnRKTs24lVFEiKD5dlJSSYk7HCdNYaOAohxYwroW9K+V9phlH+w+eDSGYffJfcHfUCo5bJzdHzfOLOo5lskv2yCEJyCk5J1fkmrQJJ8/k3SGO47w6H+6cuzC1uk49s0N+lbvxCcSIsTE=</latexit>

Idle InstancesStatoeuver Load Balancer

Decision Maker

Memory
Accesses

NF State
Sizes

Live Flows CPU Loads9 > > > > > > > > = > > > > > > > > ; <latexit sha1_base64="QSzVUx3V7nAwd07DAAirMuHpR8Y=">AAACVHicbVFNS8NAEN3E7/hV9ehlsSieSiKKHkUvHhWsCk0pm80kXbrZxN2JUEJ/pB4Ef4kXD27b4Ed1YODx3pud3bdRIYVB339z3Ln5hcWl5RVvdW19Y7OxtX1n8lJzaPNc5vohYgakUNBGgRIeCg0siyTcR4PLsX7/BNqIXN3isIBuxlIlEsEZWqrXGIQRpEJV8FhOmJEXSkiw5dU8kyJVEI+8AxqG3sFseyGo+NsUapH2MbRA5cjSqfp1dK/R9Fv+pOhfENSgSeq67jVewjjnZQYKuWTGdAK/wG7FNAouwW4pDRSMD1gKHQsVy8B0q0koI7pvmZgmubatkE7YnxMVy4wZZpF1Zgz7ZlYbk/9pnRKTs24lVFEiKD5dlJSSYk7HCdNYaOAohxYwroW9K+V9phlH+w+eDSGYffJfcHfUCo5bJzdHzfOLOo5lskv2yCEJyCk5J1fkmrQJJ8/k3SGO47w6H+6cuzC1uk49s0N+lbvxCcSIsTE=</latexit>
<latexit sha1_base64="8sCl4PVRG93w9yaw6PXtUhzk8sc=">AAACUHicfVBLa9tAEB45bZOqryQ99iJqDC64Rgol6TEkl9BeUuoX2MKs1qN4ye5K2R2VGOHfkWv6l3rrP+mtXflxsA39YJiPb4Z5fEkuhaUw/O3V9p48fbZ/8Nx/8fLV6zeHR8c9mxWGY5dnMjODhFmUQmOXBEkc5AaZSiT2k9vLqt7/gcaKTHdolmOs2I0WqeCMnBSnzZFiNE3ScjD/MD6sh+1wgWCXRCtShxWux0fex9Ek44VCTVwya4dRmFNcMkOCS5z7o8Jizvgtu8HyHi+/fN2Qho5qptDG5eKRedBwyiRIM+NCU7BQN4YwZe1MJa6zOttu1yrxf7WWyzRVVaoW2NZ6nt/YuIvSz3EpdF4Qar48Ky1kQFlQeRhMhEFOcuYI40a4ZwM+ZYZxck77I4vkXlVM6GpJ+b1zha5n7vvO4Gjbzl3SO2lHp+3o26f6+cXK6gN4B++hCRGcwTlcwTV0gcMdPMAj/PR+eX+8vzVv2brO8BY2UPP/Aaoos6w=</latexit>

f(s)

DispatcherRule Keeper

Flows

(f) STATOEUVER component structure.

Fig. 1: Motivation examples. (The testbed has two commodity servers, and each equipped with a 100Gbps NIC, 384GB DRAM,
and 24-core CPUs @2.7GHz. Each instance uses a dedicated core. DPDK is employed, workload is generated by TRex.)

Decision Maker first makes load balancing strategies based on
the status of the NFV system. The output of the load balancing
strategy is traffic dispatching rules. These rules are stored by
Rule Keeper, and it then generates leaner rules using traffic
classifications to reduce the total amount. These rules are then
installed to the hardware NIC by Dispatcher to attain line-rate
speed packet dispatching.
B. Considered Factors
The goal of STATOEUVER is to balance the traffic workload to
VNF instances and achieve the best throughput performance.
Following our analysis in Sec. II, Decision Maker leverages
four main factors and makes tradeoffs between them to gen-
erate traffic dispatching strategies. Memory Access records the
frequency of the state being accessed by the NF for each
flow. NF State Sizes aggregates the total state size on each NF
instance, which gives indications for the number of instances
that should be employed. Live Flows records the number of
flows received by the load balancer. CPU Loads logs a load
of each instance utilizing the CPU core. After getting these
information, the STATOEUVER load balancer leverages the
STATOEUVER algorithm to generate primary dispatching rules.
C. The STATOEUVER Algorithm
The NFV-SLB problem is an integer linear programming
optimization problem, but traffic dispatching should be fast
as multi-hundreds Gbps (or above) throughput requires nano-
seconds-level latencies. Hence, the algorithm should be as
simple as possible. We employ a heuristic approach briefly
described as follows. i) STATOEUVER first reads state access
pattern from Memory Access to determine an NF flow-level

dispatching or a subflow-level dispatching4. When the number
of state accesses is “little” in each flow processing, the
subflow-level dispatching is utilized. ii) Next, STATOEUVER
retrieves state variable sizes from NF State Sizes along with
Live Flows to calculate the total state size. The size is used to
determine whether the cache capacity is exceeded. If yes, more
instances are needed. iii) Finally, STATOEUVER gets the CPU
core loads. When a core is (almost) overloaded, new flows
are dispatched to other cores (instances). If all live cores are
(almost) overloaded, a new core is used (auto-scaling).

IV. CONCLUSION
This paper has analyzed the NFV-SLB problem, in which
NFV performance hinges critically on states. To address it, we
have presented a novel state-aware load balancer – STATOEU-
VER that judiciously considers state access patterns and intel-
ligently aligns state sizes, the number of live flows, and CPU
loads into consideration for the near-optimal load balancing.
We present the paper here to call for insightful and valuable
comments for our future work to finalize STATOEUVER.

REFERENCES
[1] R. Iyer, L. Pedrosa, A. Zaostrovnykh, S. Pirelli, K. Argyraki, and

G. Candea, “Performance contracts for software network functions,” in
Proc. of NSDI’19.

[2] P. Zheng, W. Feng, A. Narayanan, and Z.-L. Zhang, “Nfv performance
profiling on multi-core servers,” in Proc. of IFIP Networking’20.

[3] H. Sadok, M. E. M. Campista, and L. H. M. Costa, “A case for spraying
packets in software middleboxes,” in Proc. of ACM HotNets’18.

[4] T. Barbette, G. P. Katsikas, G. Q. Maguire Jr, and D. Kostić, “Rss++ load
and state-aware receive side scaling,” in Proc. of ACM CoNEXT’19.

4Packets in one flow can be dispatched to different instances.

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on November 10,2022 at 06:44:37 UTC from IEEE Xplore. Restrictions apply.

