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Abstract—Measurement data obtained from “things” in the
Internet of Things (IoT) faces challenges in efficient transmission
due to the low-bandwidth data transmission link. We observe that
measurement data are fixed in size and format, and low-entropy
in the time domain, indicating that compression can be benefited.
Rather than employing a single compression algorithm as advo-
cated in existing literature, we argue that optimal transmission
can be achieved by jointly considering compression overheads
and network status, where software-defined networking (SDN) is
employed to enforce network statistics and packet forwarding.
This paper presents a new paradigm that achieves optimal
transmission of SDN-empowered compressed measurement data.
We formulate the problem as an optimization problem and
prove its non-polynomial hardness time complexity. Due to this
complexity, we introduce COMPRESSO, a heuristic algorithm that
efficiently solves the problem. We conduct rigorous simulations,
and the results demonstrate the efficiency of the new paradigm
and COMPRESSO, i.e., attaining comparable performance to the
optimal solution with 50% time usage reduction.

Index Terms—Internet of Things, measurement data, trans-
mission of compressed data , quality of service.

I. INTRODUCTION

EVERY morning, You go to work and park your car
at a curbside, and then, as part of the smart city, the

traffic control officer drives a car (or simply an autopilot car)
equipped with 360◦ cameras to identify parking violations
automatically. These daily routines are all made possible by
the Internet of Things (IoT), a network of physical devices
that can collect and exchange data [1]. IoT devices collects
various types of measurement data (with equipped sensors),
e.g., temperature, motion, and location. The data is then sent
to a central hub for analysis, and the hub can in turn send
control messages to the devices, manipulating their behaviors.

For achieving the desired quality of services (QoS), it is
important to ensure the efficient transmission of measurement
data and control messages [2]. However, IoT transmission net-
works have limited bandwidth (in the order of megabits or even
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kilobits per second) due to the low power requirements [3], [4].
Although control messages are typically lean, measurement
data can be frequently collected and voluminous. Hence,
transmitting measurement data can lead to potential network
congestion [5] and subsequent degradation of services.

Existing transmission optimization techniques can be clas-
sified into two categories: reducing the data size [6], [7] and
improving the network performance [8]. We argue that trans-
mission of measurement data is suitable to be optimized by
data size reduction through an application-agnostic approach:
compression. This assertion is based on our observation that
measurement data are fixed in size and format, having low
entropy in the time domain, hence suitable for data com-
pression (see Section II). Furthermore, network performance
can be improved by selecting the “most suitable” path to
avoid network issues. Thanks to the programmability provided
by software-defined networking (SDN), monitoring network
conditions and enforcing packet transmissions (i.e., choosing
paths for packets) can be achieved flexibly and much finer-
grained [9]. Both data compression for transmission and path
selection are well-known concepts in the computer network
community [7], [10]. However, previous work has focused on
leveraging a single compression algorithm without considering
the impact of computational overhead introduced by compres-
sion, network status, and differences of various compression
algorithms to achieve optimal measurement data transmission.

This paper proposes an SDN-empowered solution for ef-
ficient transmission of compressed measurement data in IoT
transmission networks. We present the design of the SDN-
empowered Transmission Of Compressed mEasurement Data
SYStem (STOCED-SYS) that judiciously considers the joint
optimization of end-host computational and network resources
(detailed in Section III). We formulate the Optimal SDN-
empowered Transmission Of Compressed mEasurement Data
(O-STOCED) problem, which aims to minimize the average
latency by selecting compression algorithms from various
compression “ratios – overhead” combinations and network
paths across the overlayed IoT transmission SDN. Our mathe-
matical analysis reveals that the O-STOCED problem is non-
polynomial hard (NP-hard). Hence, we propose an efficient
heuristic algorithm called COMPRESSO. Simulation results
demonstrate that the proposed system can achieve up to
1000× average latency reduction. Besides, the COMPRESSO
algorithm achieves comparable performance to the optimal
solution while significantly reducing the execution time (over
50%) on real-world topologies of various sizes.

To summarize, our contribution is three-fold, as follows.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3543479

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on February 21,2025 at 06:28:15 UTC from IEEE Xplore.  Restrictions apply. 



2

0 5 10 15 20 25 30
Time (s)

−1500

−1000

−500

0

500

1000

1500

Am
pl
itu

de

NormalPhase EarthquakePhase NormalPhase

BW.RJOB..EHZ
BW.RJOB..EHN
BW.RJOB..EHE

1Fig. 1: Seismic data example (data from [15]).

• We identify the inadequacy of existing research that over-
looks the comprehensive consideration of compression al-
gorithms, compression overhead, and network conditions
for optimal measurement data transmission.

• We formally define the problem of optimal transmis-
sion of SDN-empowered compressed measurement data,
demonstrate its NP-hardness complexity, and introduce
an efficient heuristic algorithm as a solution.

• Rigorous simulations are conducted to evaluate the effec-
tiveness of the COMPRESSO algorithm.

The remainder of the paper is organized as follows. Sec-
tion II introduces background knowledge and motivates the
O-STOCED problem using examples. Section III describes
the system setting. Section IV formulates the O-STOCED
problem. In Section V, we prove the time complexity and
present the COMPRESSO algorithm. To show the effective-
ness of COMPRESSO, Section VI evaluates the COMPRESSO
algorithm. Next, we survey related work in VII. Finally,
Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

A plethora of work has been proposed to reduce data trans-
mission latency. However, we argue our scenario differs from
existing ones. In this section, we motivate the problem by
jointly considering the character of data and system platforms.

A. Stability of Measurement Data Size and Collection Rate

Measurement data is collected by sensors and devices, which
convert analog signals into digital data at a fixed rate and
using specific sampling algorithms. Data elements within a
particular data type share a common format, and multiple
data types can be nested within a monolithic data block. The
structure of these data blocks remains consistent, resulting
in a fixed data size [11]. Moreover, data collectors typically
retrieve measurement data at a specific rate, leading to a
fixed data collection rate. For example, computer systems
collect and report system performance metrics every second
(according to configuration). These observations suggest that
traditional queuing theory-based approaches [12]–[14] are
too complex and unnecessary in this scenario.

B. Stability and Compressibility of Measurement Data Values

Measurement data is generally stable but can experience sig-
nificant changes under certain circumstances. As demonstrated
in a seismic data example obtained from ObsPy [15] in
Figure 1, seismic data collected from seismic data collec-
tors shows steady or limited fluctuations in the absence of
earthquakes. This stability indicates measurement data has

low entropy in the time domain, making it suitable for
compression and enabling efficient data transmission over
limited IoT transmission network bandwidth.

C. Unpredictability and Lossless Requirements of Measure-
ment Data

Identifying data patterns and predicting succeeding data points
is often challenging or impossible for measurement data [16].
Sudden changes, such as earthquake spikes, occur without
forecastable signs and are rare compared to data under com-
mon conditions [16]. Statistical approaches, including lossy
compression, may regard these spikes as noise and omit them,
leading to incorrect measurements and potentially missing
critical alerts. Therefore, most machine learning (ML)-
based approaches and lossy compression algorithms cannot
effectively represent measurement data.

D. Merits of SDN and Multi-path Technologies

SDN has emerged as a key enabler in networking, providing
programmability and fine-grained data transmission manage-
ment over the past decade. With SDN, network entities can
obtain a global view of the network, allowing them to calculate
available capacity and congestion for each network path.
Consequently, multi-path transport protocols (e.g., multi-path
TCP [17], multi-path QUIC [18], and multi-path RDMA [19],
[20]) are widely adopted. This allows communication entities
to select the most suitable path for data transmission based on
network information provided by the SDN control plane. This
capability reduces average data transmission latency, improves
network link utilization, and helps avoid network congestion.

III. DESIGN OF STOCED-SYS

Motivated by the need for efficient measurement data transmis-
sion, we present the STOCED-SYS. This section begins with
an overview of STOCED-SYS and then introduces the prob-
lem of optimal transmission of SDN-empowered compressed
measurement data (O-STOCED).

A. System Overview

From a bird’s eyes view, STOCED-SYS leverages SDN for
monitoring network status and guiding end-host data trans-
mission across multiple paths. As illustrated in Figure 2a, the
STOCED-SYS consists of three main parts, viz., i) measure-
ment data collection, ii) SDN-empowered IoT network, and
iii) IoT cloud. In part i), dedicated sensors collect measure-
ment data, converting analog signals to digital data. Collected
atomic measurement data (i.e., one single data) is directed
to a data aggregation device. Next, a number of atomic
measurement data is batched as a data bundle on the data ag-
gregation device, which is then compressed by an compression
algorithm at a particular compression ratio to be efficiently
transmitted. Then, the aggregation device chooses a suitable
path to transmit data bundles across the SDN-empowered IoT
network (i.e., part ii)) to the data process server that is reside
in the IoT cloud (i.e., part iii)). Multiple aggregation servers
and processing servers can exist, but we only consider the
many-to-one scenario in this paper, where measurement data
is collected from multiple sources and sent to one processing
server (see Figure 2b). Transmission between data aggregation
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Fig. 2: STOCED-SYS Overview.

devices and the data process server employs the multipath
QUIC protocol [18], a multipath, reliable, low-latency trans-
port protocol, to tackle the packet loss issue. The SDN-
empowered IoT network is built as an overlay SDN on the
underlying IoT network infrastructure. This enables us to apply
traffic engineering policies for efficient flow steering across
the network. The underlying network can either be a physical
infrastructure, similar to Google’s B4 [21] or Microsoft’s
SWAN [10] networks, or an existing overlay network built
on top of a cloud platform, in which case we can leverage
the network infrastructure provided by the cloud. To build
an overlay SDN, we can leverage the Segment Routing [22]
protocol, which can efficiently employ labels to enforce data
being transmitted through selected paths. The controller of
the SDN-empowered IoT network monitors the network status,
calculates, and tells the best paths for transmitting data bundles
for data aggregation devices. Control messages between the
controller, network nodes, data aggregation devices, and data
process servers are sent across a reserved virtual dedicated
control network akin to SWAN [10]. On each data aggregation
device and data process server, we create virtual network
interface cards (vNICs), with which we pair each vNIC with
an IP address corresponding to one path.

B. Trade-off between Compression Algorithms and Ratios

The information theory establishes a theoretical upper bound
for the compression ratio [23], but achieving it contributes
to high computational complexity [24]. For example, litera-
ture [24] reports that the Brotli algorithm achieves 98.3 MB/s
compression throughput when the compression ratio is 3.381,
but the performance drops significantly to 0.5 MB/s when the
ratio is 4.347. Moreover, data block sizes also play a key
role in terms of decompression performance, and a larger
data block size contributes to a higher compression ratio
but lower encoding/decoding performance [24]. Hence, the
trade-off between compression overhead and benefits (i.e., the
reduction of transmitted data) for optimal data transmission
requires a judicious consideration.

C. Performance Metrics in Network Transmission Systems

Modern networks employ techniques like batching to improve
bandwidth and average latency [25]. Batching consolidates
multiple packets and sends them in bulk, effectively reducing
the latency required for each packet. However, batch size has
an optimal setting, e.g., the recommended batch size number
(i.e., bundle size) for DPDK is 32 or 64 [26]. Furthermore,
the SDN-empowered IoT network may have multiple paths
with varying bandwidths and latencies. Paths with higher
bandwidth can transmit more data at a short period of time, but
if leveraging the larger bandwidth and sending a large bulk of
data simultaneously, preceding measurement data have to wait
a long time before sending, which diminishes the timeliness
of the data. Also, if the latency is low, batching may not be
needed. Hence, selecting the appropriate compression algo-
rithm, ratio, data batch size, and path is crucial to achieving
optimal transmission performance.

D. Problem Statement

Inspired by the aforementioned considerations, we propose to
leverage the data compression mechanism, batching, SDN,
and multi-path transmission for efficient measurement data
transmission. Important factors include the size of the bundles
on each path, the compression algorithm and ratio used for
each bundle, capacity and latency of each path. The chal-
lenge is: with this information, how do we judiciously select
one particular compression algorithm and ratio, the size of
measurement data bundles, and a proper path to achieve the
optimal SDN-empowered transmission of compressed mea-
surement data? We call the problem the optimal transmis-
sion of SDN-empowered compressed measurement data (O-
STOCED) problem. Consequently, a systematic decision by
jointly considering the data characteristics, compression al-
gorithm features, and network conditions should be required.
We abstract the problem out as a mathematical problem in
Section IV and solve it in Section V.
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TABLE I: Notation definitions.

Notation Definition
V SDN-empowered IoT network node set. V ={v1, v2, . . . , vN}.
E SDN-empowered IoT network edge set. E={e1, e2, . . . , eM}.
P i Path set of the ith bundle (flow). P i={pi1, pi2, . . . }.
A Set of compression algorithms. A={a1, a2, . . . , aH}.
X Mapping of bundle and compression algorithms, where xij =1

indicates the ith bundle and compression algorithm aj is selected.
X={(i, j) ∈ [1, N − 1]×[1, H] | xij = 1}.

α Number of paths for each bundle.
b Number of atomic measurement data in a data bundle.
Y Mapping of bundle and path selection, where yil =1 indicates

that path pl is selected for the ith bundle. Y={(i, l) ∈ [1, N −
1]×[1, α(N − 1)] | yil=1}.

r(·) Compression ratio function.
o(·) Overhead function of compression and decompression.
c(·) Link and path capacity function.
w Window size for (de)compressing data.
clk CPU clock speed of communications entities in Es and Er .
γ Network link capacity.
ιlink Network link tranmission latency.
ιnode Network node processing latency.
λ Size of each atomic measurement data.
δ Time interval of two consecutive atomic measurement data.

IV. FORMULATION

This section mathematically formulates the O-STOCED prob-
lem. We first provide a formal description of the problem,
present the metrics and constraints considered, and finally
formulate the problem as an integer programming problem.

A. System Description

A STOCED-SYS comprises multiple identical communica-
tion entities {Es, Er} and an SDN-empowered IoT network
G = (V,E). Here, Es and Er represent the sets of sender
and receiver entities, respectively. We assume identical clock
speeds for all devices, denoted by clk. V = {v1, v2, . . . , vN}
represents the node set of the (SDN-empowered IoT) net-
work, and E = {e1, e2, . . . , eM} is the set of network links.
The capacity of each link is γ. Each network node hosts a
data aggregation/process device/server, while Er contains only
one data process server due to the many-to-one model. Let
P i={pi1, pi2, . . . } be the set of paths for transmitting data from
node vi to the destination, where vi is not connected to the
process server. The capacity function c(·) of path pl is defined
as c(pl)=min({c(ek) | ek∈pl}). The transmission latency of
each network hop and the processing latency of each network
node are represented by constants ιlink and ιnode, respectively.
Let λ be the size of an atomic measurement data, and δ be
the time interval between consecutive atomic measurement
data. A= {a1, a2, . . . , aH} represents the set of compression
algorithms1. The compression ratio function r(·) returns the
compression ratio of an algorithm. Compression algorithms
operate on data within windows of size w. o(·) represent the
overhead function of compression and decompression (i.e., the
# of CPU cycles). Measurement data bundles from different
entities of Es are injected into the network simultaneously. A
network has N − 1 data aggregation devices (i.e., one node
is the recevier), and hence, N − 1 bundles are transmitted.

1For brevity, we consider an algorithm that compresses data at varying
ratios as distinct algorithms.

Each flow between an entity in Es and the process server may
have multiple paths, but we only consider at most α paths in
our formulation. Let X= {xij} be the matrix of bundle and
compression algorithm selections. xij = 1 indicates that the
ith bundle is compressed using compression algorithm aj . Let
b be the bundle size. Let Y= {yil} be the matrix of bundle
and path selections. yil = 1 indicates that the ith bundle is
transmitted along path pl. All notations used are defined in
TABLE I.

B. Performance Metrics

1) Latency of Atomic Data Preparation

Atomic measurement data are collected at a constant time
interval δ. Since atomic data is bundled to send, predecessor
atomic data have to wait until all b atomic data is collected
that can be transmitted. Hence, the atomic data preparation
latency can be written as

lATM
i = (b− 1) δ. (1)

2) Latency of Compressing Data Bundles

In the STOCED-SYS, atomic measurement data is first bun-
dled into a measurement data bundle, and then, the sender
communication entity compresses the bundle with the selected
compression algorithm and ratio. The compressed bundle is
then transmitted over the link. On the receiver side, the bundle
is decompressed. Hence, the data processing latency can be
written as

lCi =

bλ

w

H∑

j=1

(o(aj)xij)

clk
, (2)

where
∑H
j=1 (o(aj)xij) represents the summation of com-

pression and decompression overheads for each compression
window under the selection of X. bλ

w is the number of
compression windows.

3) Latency of Transmitting Data Bundles

Each data bundle is transmitted over the SDN-empowered
IoT network along a path selected from Y. Therefore, the
transmission time for the bundled data across the network is
the size of the bundled data over the path’s throughput plus
the path latency. Thus, the compressed bundle transmission
latency is given by

lTX
i =

bλ

H∑

j=1

(r(aj)xij)

α(N−1)∑

l=1

(c(pl)yil)

+

(∑

ek∈pl

ιlink +
∑

vk∈pl

ιnode

)
. (3)

It should be noted that latency resulting from the packet
loss is well studied in [27], which is not our focus. Hence,
we merge it into ιlink. To avoid the issue of variable Y
presenting in the divisor, which is unsupported by most
optimization solvers [28], [29], we reformulate Equation (3)
by the following procedures. First, we matrixify the expres-
sion. Let R = {rj | rj=r(aj),∀j ∈ [1, H]} be the com-
pression algorithm compression ratio vector and CP =
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{
cPl | cPl =c(pl),∀l ∈ [1, α(N − 1)]

}
be the path capacity

vector. Then, let B = XR⊺ and D = YCP
⊺. With

these definitions,
∑H
j=1(r(aj)xij) can be written as Bi, and∑α(N−1)

l=1 (c(pl)yil) can be written as Di. Thus,

N∑

i=1

H∑

j=1

(r(aj)xij)

α(N−1)∑

l=1

(c(pl)yil)

can be represented as (XR⊺)(Y 1
CP ⊺ )⊺. Next, we expand this

matrix multiplication form as

lTX
i = bλ

H∑

j=1

(r(aj)xij)

α(N−1)∑

l=1

(
1

c(pl)
yli

)

+
∑

ek∈pl

ιlink +
∑

vk∈pl

ιnode.

(4)

C. Constraints

1) Data Bundle Compression Constraint

Each bundle should select exactly one compression algorithm
at a time. This constraint can be formally written as

H∑

j=1

xij = 1. (5)

2) Path Selection Constraint

Similarly, each bundle should select one suitable path from
the SDN-empowered IoT network for transmission. This can
be mathematically expressed as

α(N−1)∑

l=1

yil = 1, (6)

where (N−1)α represents the total number of path candidates
because the SDN controller calculates α paths for each bundle.

D. Objective Function

The problem of optimal transmission of SDN-empowered
compressed measurement data aims at finding the optimal
compression-based measurement data transmission strategy.
Therefore, the objective for the problem is to reduce all afore-
mentioned latencies under the STOCED-SYS (i.e., finding the
minimum latency). Consequently, our objective function is
mathematically written as

obj =

N−1∑

i=1

(
lATM
i + lCi + lTX

i

)
. (7)

E. Problem Formulation

The goal of the problem of optimal transmission of SDN-
empowered compressed measurement data is to minimize
the overall latency of transmitting measurement data from
N − 1 data aggregation devices simultaneously across an
SDN-empowered IoT network over multiple paths. This is
achieved by judiciously selecting compression algorithms and

data bundles from X and selecting the path for each bundle
from Y. Consequently, we formulate the problem of optimal
transmission of SDN-empowered compressed measurement
data (Problem P) as follows:

min
X,Y

obj

s.t. (5)(6)
xij ∈ {0, 1} ,∀i ∈ [1, N − 1],∀j ∈ [1, H],

yil ∈ {0, 1} ,∀i ∈ [1, N − 1],∀l ∈ [1, α(N − 1)],

(P)

where w, clk, α, λ, and δ are constants. {xij}, {yil} are
designed binary variables. Since the variables are integers, the
problem is an integer programming problem.

V. SOLUTION

We first prove that the problem optimal transmission of SDN-
empowered compressed measurement data is NP-hard. Then,
we present an efficient heuristic algorithm to solve it.

A. Complexity Analysis of the Problem

Proposition 1. For a special case of Problem P with the
following three conditions: (1) network link transmission la-
tency and network node processing latency are “far less” than
the bundled data transmission latency, (2) c(·) is a constant
function, and (3) the bundle size is fixed at b = 1. The O-
STOCED problem is NP-hard.

Proof. We prove NP-hard complexity by showing that the
special case of Problem P under the listed conditions in Propo-
sition 1 is equivalent to the well-known NP-hard problem,
the Generalized Assignment Problem (GAP). GAP aims to
minimize the overall costs of assigning n tasks to m workers,
with each task assigned to exactly one worker subject to the
workers’ capacity limitations. GAP can be mathematically
formulated as follows:

min
X

m∑

j=1

n∑

i=1

cijxij

s.t.
n∑

i=1

aijxij ≤ Cj ,∀j ∈ [1,m],

m∑

j=1

xij = 1,∀i ∈ [1, n],

xij ∈ {0, 1} ,∀i ∈ [1, n],∀j ∈ [1,m],

(8)

where cij denotes the cost of assigning task i to worker j,
and aij indicates the capability required for executing task i
on worker j. Cj is the available capability of worker j. xij is
a binary variable indicating if task i is assigned to worker j
(1 for yes, 0 for no). It has been proven that the GAP problem
is NP-hard [30].

For the special case of Equation (P) under conditions (1)-
(2), the equivalence of Equation (P) and the GAP problem can
be established. Given condition (1),

∑
ek∈pl ι

link+
∑
vk∈pl ι

node

can be omitted in Equation (3). Given condition (2), c(pl) can
be replaced by a constant ψ outside of

∑
. Hence, we can

rewrite Equation (3) as
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lTX
i =

bλ

H∑

j=1

(r(ai)xij)

ψ

α(N−1)∑

l=1

yil

. (9)

Due to the path selection constraint defined in Equation (6),
Equation (9) can be written as

lTX
i =

bλ

H∑

j=1

(r(ai)xij)

ψ
. (10)

Given condition (3), the objective function becomes

obj =
λ

w × clk
N−1∑

i=1

H∑

j=1

(o(aj)xij) +
λ

ψ

N−1∑

i=1

H∑

j=1

(r(aj)xij) .

(11)
Let obj1 = λ

w×clk
∑N−1
i=1

∑H
j=1 (o(aj)xij) and obj2 =

λ
ψ

∑N−1
i=1

∑H
j=1 (r(aj)xij). Thereby, Problem P can be refor-

mulated as

min
X

(obj1 + obj2)

s.t. (5)(6),

xij ∈ {0, 1} ,∀i ∈ [1, N − 1],∀j ∈ [1, H].

(P’)

Finding the solution of {xij} to achieve the minimum ob-
jective value defined by Equation (11) becomes equivalent
to achieving minX obj1 + minX obj2. We divide the special
case into two problems, viz., Problem P1 and Problem P2, as
follows.

min
X

obj1

s.t. (5)(6).
(P1)

min
X

obj2

s.t. (5)(6).
(P2)

For each problem in Problem P1 and Problem P2, the goal
is to minimize the latency (i.e., latency of compressing and
transmitting data bundles) introduced by compression and data
transmission of each bundle. In each problem, the mapping
between the ith bundle and compression algorithm aj can be
considered as task j and worker m. Under this construction,
we can prove that the solution of minimum overall latency
of transmission of compressed measurement data exists if and
only if the optimal solution of the GAP problem exists. This
construction can be conducted in polynomial time. Since GAP
is NP-hard, Problem P1 or Problem P2 are also NP-hard.
Hence, combining Problem P1 and Problem P2, Problem P’
is NP-hard. Problem P’ is a special case of Problem P.

Therefore, we can conclude:

Theorem 1. The problem optimal transmission of SDN-
empowered compressed measurement data is NP-hard.

Algorithm 1: The COMPRESSO algorithm.
Input: G = (V,E): The topology;
Input: A: compression algorithm set;
Input: γ: link capacity; ιlink|node: latency of

link/node;
Input: λ: atomic data size; δ: time interval between

atomic data; α: number of paths at most;
Output: X: bundle and compression algorithm

selection mapping;
Output: Y: bundle and path selection mapping.

1 A′ ←
{
a′j |a′j = r(aj)λ

γ − o(aj)
clk

}
;

2 Sort(A, by value of a′, DESC);
3 Retrieve all paths P and flows F from G;
4 obj ←∞; Init(X,Y);
5 for fi ∈ f do
6 j ←Id(a′1);
7 xij ← 1;
8 Retrieve the paths set P i of flow fi from P ;
9 Sort(P i, by path capacity, ASC);

/* Only consider the α most
shortest paths. */

10 P i ← P i(0 : α− 1);
11 for pl ∈ P i do

/* Index starts from 1. */
12 l←Id(P i[1]);

/* Initialize variable Y. */

13 if
∑α(N−1)
l=1 yil = 0 then

14 yil ← 1;

/* Iteratively find the minimum
objective solution. */

15 for aj ∈ A do
16 xtemp

ij ← 1; ytemp
il ← 1;

objtemp ← obj(Xtemp,Ytemp);
17 if obj > objtemp then
18 obj ← objtemp;
19 X← Xtemp; Y ← Ytemp;

20 return X,Y;

B. The COMPRESSO Algorithm

Solving the problem of optimal transmission of SDN-
empowered compressed measurement data is straightforward
for small problem instances (i.e., a small number of compres-
sion algorithms and ratios, and a small network topology)
using an integer programming solver. However, integer pro-
gramming solvers struggle to find optimal or even feasible
solutions for large problem instances with a large number
of compression algorithms and ratios due to the NP-hard
complexity. To address this, we propose a heuristic solution
called COMPRESSO (detailed in Algorithm 1) that balances
compression performance and transmission overhead.

Algorithm 1 consists of two main phases: preparation and
iterative selection phases. Lines 1-4 cover the preparation
phase, where compression algorithms are reordered by the
influence of compression (defined by r(a)λ

γ ) and overhead
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(defined by o(a)
clk ). Calculating A′ takes O(H) time com-

plexity, and the time complexity of the sorting procedure is
O(H logH). Lines 5-19 describe the iterative selection phase.
It tests if the algorithm can reduce the overall objective value
for each flow (i.e., data bundle). Since the algorithms are
ordered by compression and overhead, we can easily select
a compression algorithm that is “cost-effective” (i.e., having
a good compression ratio without introducing much overhead
defined by A′). Whenever the current iterated solution has
a smaller objective value, the objective value and the current
solution X,Y are updated. Calculating the objective value has
a time complexity of O(N). Thus, the total time complexity
of the iterative selection phase is O(N2H), and the time
complexity of Algorithm 1 is O(N2H) + O(H), which is
polynomial time complexity.

VI. SIMULATION

In this section, we first introduce the simulation setup and
compare algorithms, and then present the simulation result
analysis. By evaluating the performance of the compared
algorithms, we answer two questions: i) Does COMPRESSO
reduce average transmission latency? ii) Does the computation
of the COMPRESSO algorithm require a large amount of time?

A. Simulation Setup

1) Testbed Setup

We employ topologies from TopologyZoo [31] in our simula-
tion. We run our simulation under all topologies but only show
results of three topologies (viz., Abilene [32], Chinanet [33],
and Ion [34]) due to space limitations. Abilene has 11 network
nodes and 14 links, Chinanet has 42 nodes and 66 links,
while Ion has 128 nodes and 150 links. These topologies
represent small (i.e., Abilene), medium (i.e., Chinanet), and
large (i.e., Ion) topologies in TopologyZoo. It is noted that
the Ion topology is the largest topology we can run on our
testbed. Our simulation is conducted using Python, and we
employ python-igraph, a popular Python graph library, to
read topologies from the gml file provided by TopologyZoo.
Our simulation runs on a server equipped with an Intel Xeon
6420 @2.8 GHz CPU (32-Core) socket and 64 GB DRAM.
In the simulation, each node attaches to a data aggregation/
process device/server, in which we choose one node as the
destination (that attaches to the data process server), and the
remainder nodes are sources (that attach to data aggregation
devices). Each data aggregation server can choose one path in
the network to transmit (bundled) data to the destination based
on the calculation of X,Y. We set b=4 (apart from the bundle
size simulations in Figure 3), set γ ∈ [1 Kbps, 10 Mbps]
randomly (apart from the path capacity simulations in Fig-
ure 5), set λ=100 Kb (apart from the atomic data size tests
in Figure 7), and set the time interval as 1 second (apart from
the time interval tests in Figure 7). Moreover, we set α= 5,
w = 5000 b, ιlink = 1 ms, ιnode = 0.5 ms. We argue these
parameters are practical settings for IoT networks [35]. Based
on the observation in Section III-B, the compression ratios
are generated randomly in [1, 200], and the corresponding
compression overhead is set as 2× 106r(·).

2) Compared Algorithms

1) Shortest Path (Shortest): this algorithm selects the path
with the minimum number of hops (i.e., the shortest path)
to transmit each individual atomic measurement data that
is neither bundled nor compressed before transmission.

2) Shortest Path with Bundle (Shortest Bundle): this algo-
rithm bundles atomic measurement data into a single data
bundle before transmission. The data bundle is then trans-
mitted over the shortest path without data compression.

3) Shortest Path with Highest Compression Ratio (Shortest
HiComp): this algorithm bundles atomic measurement
data and compresses the bundle using the compression
algorithm (or compression level) that achieves the highest
compression ratio. The compressed data bundle is then
transmitted over the shortest path.

4) Optimal: this algorithm represents the optimal solution to
the O-STOCED problem. We utilize a popular optimiza-
tion solver, Gurobi [36], to calculate the optimal solution.

5) COMPRESSO: this algorithm is detailed in Algorithm 1.

B. Can COMPRESSO Reduces Average Latency?

In this subsection, we answer this question by evaluating
the average latency of different parameter settings. We first
present the definition of average latency to avoid ambiguous
understanding. We then show the simulation results under
different topologies from TopologyZoo of various sizes. In
conclusion, COMPRESSO outperforms all other compared
algorithms (except Optimal) in all settings.

1) Average Latency

We define the average latency as the average time to transmit
b consecutive atomic measurement data. This can be mathe-
matically expressed as

l =
ldata process + ldata transmission + lnetwork path + linterval

b
, (12)

where ldata process is the time taken to prepare all b atomic
measurement data for transmission, ldata transmission is the time
taken to transmit all b atomic measurement data, lnetwork path is
the latency of the network path between the sender and re-
ceiver, and linterval is the accumulation of all intervals between
b atomic measurement data. The average latency metric is a
crucial indicator of the QoS of a network [37], measuring the
responsiveness of the network in transmitting data packets.

2) Average Latency of Different Bundle Sizes

We vary the bundle size from 2 to 15 to evaluate the perfor-
mance of the compared algorithms. As shown in Figure 3,
Optimal and COMPRESSO consistently outperform the
other algorithms. While the average latency slightly increases
with larger bundle sizes (Shortest HiComp, Optimal, and
COMPRESSO), the benefit of bundling diminish as bundle
size increases. This suggests that the time interval becomes
more influential with larger bundle sizes. Notably, Optimal
and COMPRESSO overlap in all bundle sizes, indicating that
COMPRESSO achieves comparable performance to Optimal.
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Fig. 3: Average latencies of various bundle sizes under different topologies.
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Fig. 4: Average latencies of various atomic data sizes under different topologies.
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Fig. 5: Average latencies of various path capacities under different topologies.
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Fig. 6: Average latencies of various path latencies under different topologies.

3) Average Latency of Different Atomic Data Sizes

Atomic data size can affect data transmission and compression
times. We vary λ from 1 Kb to 10 Mb. As demonstrated in
Figure 4, Shortest and Shortest Bundle show minimal change
as atomic data size increases. Optimal and COMPRESSO ex-
hibit similar performance for atomic data sizes below 400 Kb.
However, for larger data sizes, the performance difference
becomes significant in the Abilene and Ion topologies. This
is attributed to the increased impact of data transfer times
with larger atomic data sizes. On the other hand, COMPRESSO
shows similar performance across all atomic data sizes in the

Chinanet topology due to its “star-like” structure [38], which
limits path diversity. Notably, despite the larger size of the
Ion topology, the average latency is not significantly higher,
indicating that path latency is less critical in the O-STOCED
problem.

4) Average Latency of Different Path Capacities

We evaluate the impact of path capacities by varying link
capacity sizes from 1 Kb to 10 Mb. As shown in Figure 5,
Shortest introduces up to 16.7% higher average latency than
Optimal, while Shortest HiComp is approximately 4% higher.
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Fig. 7: Average latencies of various time intervals between atomic measurement data under different topologies.
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Fig. 8: Comparison of execution times of different algorithms under the topologies.

Shortest Bundle and COMPRESSO achieve similar performance
to Optimal, particularly as capacity size increases. This is
because path latency is relatively small (in the magnitude of
1/1000) compared to data transmission time usage (cf. Fig-
ure 6 for the impact of path latencies). Furthermore, Shortest
HiComp generates higher latency than Shortest Bundle due to
its overhead.

5) Average Latency of Different Path Latencies

We investigate the impact of path latencies by varying both
link latency and node processing latency from 0.1 to 5000.
As depicted in Figure 6, Optimal and COMPRESSO generally
achieve over 100× improvement compared to Shortest and
Shortest Bundle. In smaller topologies (i.e., Abilene and
Chinanet), Shortest HiComp and COMPRESSO initially per-
form comparably to Optimal for low path latencies. However,
as latencies increase, the performance of Shortest HiComp
and Optimal diverges. This is because latency has a more
pronounced impact as it increases, leading to an “early”
divergence in the Ion topology due to its longer paths (cf.
Figure 6c).

6) Average Latency of Different Collection Rates

Finally, we explore the influence of time intervals2 between
consecutive atomic measurement data. The time interval in-
troduces the same latency to all algorithms according to
Equation (1). As expected, we observe a (asymptotical) linear
increase in average latency as the time interval increases in
Figure 7. However, the change is relatively small3 due to the
bandwidth being the primary bottleneck, resulting in similar
performance for Shortest and Shortest Bundle.

2We use “time interval” for short if not explicitly point out otherwise.
3The y-axis is plotted in the logarithm scale, which diminishes the differ-

ences.

C. Does COMPRESSO Itself Introduce Significant Overhead?

Figure 8 presents the execution time required for each algo-
rithm. Shortest, Shortest Bundle, and Shortest HiComp exhibit
negligible execution times. This is because they solely utilize
pre-calculated data (e.g., shortest paths, compression ratios,
and overhead) without additional computations. In comparison
to Optimal, COMPRESSO demonstrates a significant reduc-
tion in execution time, achieving over 50% improvement,
while maintaining comparable performance levels.

VII. PRIOR ARTS

Data compression techniques have been extensively utilized in
data transmission over computer networks [39], [40]. However,
most approaches typically employ a single specific compres-
sion algorithm. For instance, gzip [41] is commonly used
in hypertext transfer protocol (HTTP) [42]. However, these
methods do not address the optimization of compression ratios
concerning computational complexity and data transmission
performance. This section briefs existing arts under two cate-
gories: lossless and lossy solutions.

Lossless solutions. Lossless compression algorithms pre-
serve data integrity by utilizing advanced encoding techniques.
For example, the string "111111" can be compressed as "1"
×6 and readily decompressed to the original string. In such
systems, data is initially compressed into an encoded format,
and the compressed data is transmitted over the network.
Encoding-based approaches have been in existence for ap-
proximately 80 years [23]. Even today, researchers continue to
explore optimizations for data compression techniques [43]–
[46]. For example, Brotli [43] is a modern dictionary-based
compression algorithm developed by Google that prioritizes
resource optimization while achieving high compression ra-
tios. Similarly, x3 [46] incorporates the insertion of phrases
into dictionaries. Chipm [44] and ELF [45] are designed for
database systems but can also be employed as compression
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algorithms for data transmission. Nevertheless, none of these
approaches consider the selection of optimal compression
algorithms and ratios for latency-sensitive communication.

In contrast to lossless compression algorithms, lossy so-
lutions achieve higher compression ratios by compromising
data fidelity [47]–[49]. Additionally, machine learning-based
(ML-based) approaches constitute another category of lossy
solutions [50]–[52]. Instead of directly identifying duplicate
data, ML-based solutions convert it into an ML model, which
is then transmitted across the network. ML-based approaches
are effective for compressing multimedia data that exhibits
tolerance to minor data inconsistencies [52] (e.g., inconsis-
tencies can be treated as noise points). Volumetric video
transmission is a practical example of using ML models
to enhance video quality under constrained bandwidth [53],
[54]. However, the errors introduced by ML models can
become excessive, resulting in the retrieved data unusable,
particularly in measurement data compression where spikes
are challenging to predict. Given the potential loss of critical
information in lossy compression algorithms (cf. Section II),
they are not suitable for measurement data transmission.

VIII. CONCLUSION

In this paper, we identified the stability of IoT measurement
data, which can benefit from compression during transmission.
Based on this insight, we proposed an SDN-empowered sys-
tem for transmitting compressed measurement data, referred
to as STOCED-SYS, which integrates SDN and compression
to optimize measurement data transmission. We formulated
the optimal transmission of SDN-empowered compressed (O-
STOCED) problem as an optimization problem and proved its
NP-hardness. To efficiently address this problem, we presented
an efficient heuristic algorithm called COMPRESSO. Our sim-
ulations demonstrate that COMPRESSO achieves performance
comparable to the optimal solution, reducing computational
time by over 50%, with a latency reduction on the order of
0.5 ms.
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