
Journal of Network and Computer Applications 178 (2021) 102969

Available online 7 January 2021
1084-8045/© 2021 Elsevier Ltd. All rights reserved.

Secure and cost-effective controller deployment in multi-domain SDN
with BAGUETTE

Wendi Feng, Chuanchang Liu *, Bo Cheng, Junliang Chen
Beijing University of Posts and Telecommunications, 10 Xitucheng RD, 100876, Beijing, China

A R T I C L E I N F O

Keywords:
Multi-domain SDN
Controller security
Attack mitigation

A B S T R A C T

Software-Defined Networking (SDN) is becoming prevalently in recent years. Practical SDN (e.g., production
Software-defined Wide Area Network) deployments leverage multiple commercial controllers, which partitions
the network into multiple domains, and each domain uses a dedicated controller. Commercial controllers are
usually used for reliability and fully post-sales supports. However, using a single type of SDN controllers can
compromise the whole network if the attacker can exploit its vulnerabilities. In this paper, we consider this
security issue and present the Secure and Cost-effective Controller Deployment (SCCD) problem. The SCCD problem
aims to replace a few controllers with different types of commercial SDN controllers, which satisfies the security
requirement at a minimal cost. The complexity of the SCCD problem comes from common vulnerabilities shared
among different types of SDN controllers and attack propagations among network domains. We prove the non-
deterministic polynomial-time hardness (NP-hardness) of the problem and propose the BAGUETTE algorithm to
efficiently solve the problem. BAGUETTE judiciously chooses and replaces controllers for critical domains with
selected types of commercial SDN controllers. Simulation results show that BAGUETTE can achieve comparable
performance to the Optimal solution and can stably achieve up to 12.6x security enhancement compared with
the single controller type deployment and reduce to 11.1% cost of the securest deployment.

1. Introduction

Software-defined Networking (SDN) (Kreutz et al., 2015) is a prev-
alent networking technology, which decouples the control plane and
data plane of network devices (i.e., SDN switches) and allows in-
novations to be easily applied. It also simplifies network management
with the fine-grained network controlling and monitoring mechanisms.
Beside, it provides open interfaces that allow customized functionality
and new network wide applications to be quickly deployed (Arashloo
et al., 2016). Owing to the advantages, SDN plays an important role in
Cloud Computing (Hayes, 2008), Edge Computing (Shi et al., 2016), 5G
(Boccardi et al., 2014), and Fog Computing (Bonomi et al., 2012). Many
industrial companies, such as Google (Jain et al., 2013) and Facebook
(Choi et al., 2018), have started deploying SDN in their production en-
vironments. AT&T, as one of the biggest Internet Service Providers (ISP),
also aims to increase the SDN deployment to 75% by the end of 2020
(Fuetsch, 2020).

Large scale commercial SDNs (e.g., production Software-defined
Wide Area Networks) leverage the multi-domain deployment as the

ever-growing demand expands the network that requires scalability,
reliable, and high performance. In multi-domain SDNs, each domain is
deployed with a controller.1 Fig. 1 depicts a network that is partitioned
into three domains, and each controller connects to its domain’s SDN
switches. The controller and switches are connected with the in-band
mode (Jain et al., 2013; Hong et al., 2013; Yap et al., 2017), that control
messages share the communication channel with data packets. Pro-
duction networks usually utilize commercial controllers as they are
more reliable and provide fully post-sales supports (Teo et al., 2016).

Existing work consider data communications (Phemius et al., 2014),
controller placement (Guo et al., 2019), and reliability enhancement
(Song et al., 2017) in multi-controllers of multi-domain SDNs. They use
only one type of SDN controller and fail to consider the security benefits
of deploying different types of SDN controllers. If the attacker compro-
mises one controller by leveraging its vulnerabilities, other controllers in
other domains with the same type can also be compromised, and thus
the whole network can be compromised. We call it the multi-domain
controller attack. For example, the attack first uses an end-host and
captures the “switch – controller” connection or disconnection packets.

* Corresponding author.
E-mail address: lcc3265@bupt.edu.cn (C. Liu).

1 We use “controller” and “SDN controller” interchangeably in this paper.

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

https://doi.org/10.1016/j.jnca.2020.102969
Received 29 September 2020; Received in revised form 8 December 2020; Accepted 25 December 2020

mailto:lcc3265@bupt.edu.cn
www.sciencedirect.com/science/journal/10848045
https://www.elsevier.com/locate/jnca
https://doi.org/10.1016/j.jnca.2020.102969
https://doi.org/10.1016/j.jnca.2020.102969
https://doi.org/10.1016/j.jnca.2020.102969
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2020.102969&domain=pdf

Journal of Network and Computer Applications 178 (2021) 102969

2

The attacker then counterfeits a disconnection packet and exploits the
controller’s control message validation vulnerability to disconnect the
switches from the “real” controller and then re-connect to the “fake” one
(the controlled end host). This domain is thus compromised. Next, the
attacker can further propagate the attack to adjacent domains if their
controllers have the common vulnerability that is exploited by the
attacker. Finally, the whole network can be compromised. (Scott-Hay-
ward et al., 2016; Chica et al., 2020; Scott-Hayward et al., 2013).

The question is whether we can mitigate attacks from “spreading”
out to other domains and make the network resilient to attacks by using
different types of controllers in the commercial SDN deployment? The
answer is yes. Different types of controllers may potentially have vul-
nerabilities,2 but an attacker may only be able to exploit one or a few
specific vulnerabilities. When using a device whose vulnerabilities
cannot be exploited, the attack cannot compromise the controller and
the domain.

Simply using different types of controllers at different domains can
be either unnecessary or insufficient. This is because i) practical SDN
networks use commercial SDN controllers for better services, the
deployment cost will be exorbitant because this often uses more types
than needed and increases the expense when the security level has
already been satisfied (see Section 3.2.2). ii) Security level may fail to be
provided as common vulnerabilities reside in multiple switch types.
Hence, the attack can still propagate and compromise the network.

Inspired by the above observation, we present the Secure and Cost-
effective Controller Deployment (SCCD) problem in this paper, which
jointly considers security and the controller deployment cost in the
commercial multi-domain SDN controller deployment. In a nutshell,
SCCD aims to identify few critical domains in the multi-domain SDN and
replaces their existing controllers with specific types to satisfy the se-
curity requirement at a minimum cost. The network functionality will
not be influenced due to the openness (see Section 2.3). The complexity
of the problem results from common vulnerabilities of controller types and
attack propagations among domains. We prove the SCCD problem is Non-
deterministic Polynomial-time Hard (NP-hard), and hence, we propose
an efficient heuristic algorithm called BAGUETTE to solve it. BAGUETTE

judiciously chooses a small portion of the critical domains and deploy
smartly selected different types of controllers for them. Our simulation
results show that BAGUETTE can stably achieve near-optimal performance
with up to 12.6x security enhancement and down to 11.1% cost of the
most secure method.

In summary, our contribution is three-fold:

• We identify the multi-domain controller attack in commercial multi-
domain SDN deployments, and mathematically formulate the SCCD
problem.

• We prove the NP-hardness of the SCCD problem and propose
BAGUETTE to efficiently solve it. BAGUETTE can satisfy the security
requirement with a minimum deployment cost.

• We evaluate BAGUETTE under various real-world topologies and
compare them with baseline algorithms. Simulation results show
that BAGUETTE can stably achieve near-optimal performance.

The remainder of this paper is organized as follows. Section 2 in-
troduces the fundamental background knowledge for SDN and multi-
domain SDN. Section 3 first presents the considered attack model and
real-world attack examples and then motivates the SCCD problem with
examples. Section 4 defines the security requirement and mathemati-
cally formulates the SCCD problem. In Section 5, we prove the NP-hard
complexity for the SCCD problem and propose BAGUETTE to efficiently
solve it. Section 6 describes the simulation setup and compares BAGUETTE

with baseline algorithms. Section 7 surveys the most relevant related
works, and Section 8 concludes the paper.

2. Background

Before presenting the attack model, we first briefly introduce the
SDN and multi-domain SDN network as well as their benefits.

2.1. Software-defined networks

SDN is a state-of-the-art network architecture that decouples the
control plane and the data plane by removing the control plane from the
network device and leaving the basic forwarding functionality. This
differs from traditional networks that couple both planes in the same
device. As shown in Fig. 2, SDN uses a (logically) central controller to get
the “global view” of the network and to guide the data plane (controlled
devices) forwarding packets. The communications between the
controller and SDN switches can be either in-band or out-of-band using
SDN protocols (e.g., OpenFlow (McKeown et al., 2008)). The former
transmits the control messages by sharing the links with the data plane,
while the latter uses dedicated “controller – switch” links.

2.2. Multi-domain SDN

As the network enlarges (e.g., the number of SDN switches increases),
a single controller becomes insufficient in handling the large demand of
controlling the devices, and thus multiple controllers are needed. In
which, each controller can only control a small number of SDN switches
and synchronize the topology information with others. The control
plane is still logically centralized but becomes more powerful. Practical
SDN (especially software-defined wide area networks) deployments
employ this scheme, which partition the whole network into many do-
mains (sites). Each domain contains many SDN switches controlled by
one (or more for resiliency) controller, and the control messages are

Fig. 1. The multi-domain SDN deployment. Each domain has a dedicated
controller. “ …” in Domains 1 and 3 represent the omitted SDN devices and
connections.

Fig. 2. Software-defined networks versus traditional networks. “C” and “D” in
the traditional network device icon represent the control plane and the data
plane, respectively.

2 The controller’s vendor may report vulnerabilities to its customer, or the
network management team may identify the vulnerabilities.

W. Feng et al.

Journal of Network and Computer Applications 178 (2021) 102969

3

passed in-band (see Fig. 1).

2.3. Openness of SDN brings new opportunities

One of the greatest advantages provided by SDN is that the archi-
tecture is open. This allows new, customized, or 3rd-party network ap-
plications to be quickly implemented and deployed on the network with
the same set of underlying network topology and infrastructure. The
openness is achieved by decoupling the control plane and data plane and
adopting unified south-bound (between SDN switches and the SDN
controller) and flexible north-bound APIs (between SDN controller and
the network management applications). The network management ap-
plications can run at the controller to instruct the forwarding behavior
under different requirements. This openness gives us the flexibility that
functionality can be easily realized using different types of controllers.

3. Attack model and motivation

In this section, we first present our attack model. Base on the attack
model, we then present examples to motivate the SCCD problem.

3.1. Attack model and real-world examples

Our attack model is based on the 0day vulnerabilities (Bilge and
Dumitraş, 2012), which have not yet been patched. We consider the case
where the defender side (controller vendors and network operators)
masters more vulnerability information than that of the attacker side
(attackers). This is because controller vendors possess the full design and
implementation details of the controller, and vulnerable information is
prone for them to get. They can further report this information to their
users (network operators). Besides, their users may have a dedicated
security team to identify possible software flaws and to defend against
attacks.

In this section, we present the attack model and two possible real-
world examples. As shown in Fig. 3, our attack model considers
compromising the whole multi-domain SDN network by incrementally
compromising one domain of the SDN network by leveraging the
vulnerability on the controller and then propagates the attack to other
domains. The attack propagation is conducted by exploiting common
vulnerabilities (Li et al., 2016) shared across controllers since designing
bug-free computer systems is notoriously hard (Vizarreta et al., 2020).

Common vulnerabilities usually happen due to the reuse of codes.
Since modern software development uses existing libraries to avoid
“building the wheels”, when the used library contains vulnerabilities, all
software using the library can suffer from security threats. Hence, if two
controllers use the same flawed library, they will share common vul-
nerabilities, and thus, even using different types of controllers, the
attack can still attack both of them.

The multi-domain controller attack has the following characteristics.
i) The attacker compromises a domain by leveraging the vulnerabilities
of its controller. ii) The attacker can propagate to adjacent domains if the

current domain’s controller is compromised, and iii) if the domain can
mitigate the attack, the attack will terminate. Many attack schemes in
the real-world have these characteristics. We list two attack examples as
follows.

3.1.1. Unauthorized access attack
Authentication is the most critical defense of attacks, but authenti-

cation mechanisms are complex and prone to flawed design. This is
because the in-band “controller – switch” communication mode uses the
same links as transmitting data, and hence, the attacker may access the
controller by attacking its authentication system (e.g., password guess-
ing). After compromising the controller, the attacker can modify the
flow tables and change the forwarding behavior to conduct further
attacks.

3.1.2. Controller hijacking attack
Another possible method of gaining access to the controller is by

hijacking the “controller – switch” communication with carefully
impersonated packets. If the controller fails to provide essential pro-
tections, the attacker can capture these control packets (e.g., the
“controller – switch” connection and disconnection packets) with an
end-host E in the domain and then counterfeit the packet with the E’s
information to “mislead” SDN switches to connect E. The attacker can
then change the routing policies and conduct the same kind of controller
hijacking in adjacent domains.

3.2. Motivation

This sub-section presents the SCCD problem examples to show that
the single SDN controller type fails to mitigate attack propagations, and
thus multiple controller types are needed to enhance security. However,
solely considering the security factor results in exorbitant cost, but
concerning the cost alone fails to guarantee the security requirement.
Thus, an intelligent multi-type controller deployment mechanism by
jointly premeditating security and cost to achieve the Secure and Cost-
effective Controller Deployment (SCCD) in multi-domain commercial
SDNs is needed. For brevity, we represent a domain as a node.

3.2.1. Insecure single controller type deployment
Fig. 4a demonstrates that merely using one type of controller to

deploy all domains can lead to vulnerabilities being shared across do-
mains, and hence if any domain (e.g., domain v1) is compromised by an
attack, the attack can propagate to all other domains and compromise
the whole network. This shows that a single controller type deployment
is insecure, and multiple types should be employed for security
enhancement.

3.2.2. Curse of arbitrary deployment
Generally, multiple controller types deployment can enhance secu-

rity because the vulnerabilities can be different on different types of
controllers. However, arbitrarily changing controllers with multiple
types would also fail to protect the network. In Fig. 4b, when domains v1,
v3, v4, and v6 are randomly selected to change to another type of
controller, where v1, v3, and v6 use one controller type (shown in gray
color), and v4 uses another type (shown in light green color). The gray
and light green types do not share common vulnerabilities. Suppose the
attack arrives at v1, and the attack can propagate to domain v6, then to
v3, and finally to v4. Thus v1, v3, and v6 are compromised. When the
attack propagates to v4, it cannot compromise v4, and the attack termi-
nates. However, half of the network domains are compromised.

As depicted in Fig. 4c, using different types for each domain may
mitigate the attack. However, the overall cost would be exorbitant
because the security requirement can be satisfied by changing the con-
trollers of a few numbers of domains. Since each type of commercial
controller has different costs (Cisco Systems, Inc; Huawei Technologies
Co., Ltd; Juniper Networks, Inc; Telefonaktiebolaget LM Ericsson), one

Fig. 3. The multi-domain controller attack demonstration. The attacker first
compromise one domain by attacking the controller, and it then controls the
controller and propagates the attack to compromise other domains. “ …”
represent the omitted entities.

W. Feng et al.

Journal of Network and Computer Applications 178 (2021) 102969

4

possible way to lower the cost would be simply sorting the controller
types based on their cost from low to high and change the type of the
node using the sorted types one by one to minimize the cost. However,
different controller types may contain common vulnerabilities due to the
use of shared libraries. Hence, attacks can leverage these common vul-
nerabilities to compromise the network. As shown in Fig. 4d, even do-
mains v1, v3, and v6 use different types, the attack can still propagate
from v1 to v6 and v3, and then, compromise all of them. Consequently,
arbitrarily deploying the controller types is unreliable.

3.2.3. Security and cost-effective deployment
By selecting vulnerability-distinct controller types adjacent to the

attack entry domain, the attack can be mitigated at the initial stage. In
Fig. 4e, the controller type deployment can efficiently mitigate the
attack on its propagation path and achieve the minimum overall cost
through the SCCD intelligent SDN controller type deployment scheme.
This paper presents the problem of finding the SCCD scheme that gua-
rantees the security requirements at a minimum cost.

4. Problem formulation

In this section, we first mathematically present the network system
description and then propose security metrics to describe the possibility
of compromising the network. We further introduce constraints and the
objective function of the SCCD problem. Finally, we formulate the
problem as an optimization problem.

4.1. System description

We mathematically formulate the network in this subsection. All
notation definitions can be found in Table 1. A multi-domain SDN
network can be divided into multiple domains and represented as a
graph 𝒢 = (𝒱,ℰ), where 𝒱 = {v1, v2,… } is the set of network domains,
and vi represents the ith domain in the network. ℰ is the links set, and

Fig. 4. Motivation examples demonstration. Each node represents a network domain that has one SDN controller. Unsuccessful attack propagation is omitted for a
clearer illustration, and we suppose the first entry domain can always be compromised to demonstrate attack propagations.

Table 1
Notation definitions.

Notation Description

𝒱 The network domain set. 𝒱 = {v1 , v2,… }.
𝒮 The controller type set. S = {s1, s2 ,… }.
𝒞 The cost set. Costs of each type of controller. C = {c1, c2 ,… }.
xij Domain vi uses type sj.
ℱ j Controller type sj’s vulnerabilities. ℱ j =

{

f j
1 , f

j
2,…, f j

|ℱ j|

}

.
𝒜j The attack set of the controller type sj. 𝒜 = {a1, a2,… }.
Pj The attack probability of controller type sj.
X The controller type mapping scheme. xij ∈ X,∀vi ∈ 𝒱,∀sj ∈ 𝒮.
e(X) The compromising expectation of the whole network under controller

deployment X.
Emax The maximum compromising expectation provided by network operator.
𝒱

*ak
i

The compromising sub-graph domains set.

rak
i (X) The compromised ratio under the deployment scheme X and attacked by

attack ak when domain vi is the entry domain.

W. Feng et al.

Journal of Network and Computer Applications 178 (2021) 102969

5

each link connects two domains. Each domain in 𝒱 can choose multiple
controller types to deploy. Let 𝒮 = {s1, s2,… } represents the controller
type set. In the default setting, all domains are deployed with the same
type of controller. Different controller types have different costs, and the
cost of the existing controller type is 0 as no further expenses are needed
for the deployed controller. Let 𝒞 = {c1, c2,…, } represents the cost of
purchasing each controller type. We use xij = 1 to denote network
domain vi is deployed with controller type sj, and otherwise xij = 0.

4.2. Attack metrics

In this subsection, We introduce probability-based security metrics
to measure the security of the network. Specifically, we use attack
probability to measure the possibility of compromising a specific
controller type by an attack. We then consider the influence of attack
propagation with the controller compromised ratio. Finally, we present the
compromising expectation to evaluate the overall compromising expec-
tation of the network, and the security requirement is evaluated by the
compromising expectation.

4.2.1. Attack probability

Each type of controller may have multiple vulnerabilities. Let ℱ j =

{

f j
1, f

j
2,…, f j

|ℱ j|

}

be the set of all vulnerabilities of type sj, where
⃒
⃒ℱ j

⃒
⃒ is

the number of vulnerabilities of type sj. Let ℱ =
⋃

jℱ j be the total
vulnerability set, and let 𝒜 = {a1, a2,… } be the attack set. The attack
set contains all possible attacks based on the reports of vendors or the
network operator’s previous experiences. Each attack can exploit one or
more vulnerabilities, so that each attack ak is a subset of the vulnera-
bility set ℱ (excluding ∅). Thus, the total number of attacks is 2|ℱ | − 1. If
attack ak can exploit the vulnerability that type sj has, type sj can be
compromised by attack ak.

The attack probability of controller type sj is the ratio of the number
of attacks that can compromise the type to the total number of attacks. It
is formulated as

Pj =

⃒
⃒
⃒
⃒

⋃

ak∩ℱ j∕=∅
{ak}

⃒
⃒
⃒
⃒

|𝒜|
. (1)

4.2.2. Domain compromised ratio
An attack can propagate from one domain to another if these

domains are physically adjacency, and have the same type or common
vulnerability sharing controllers deployed. We present the concept of
the compromising sub-graph to identify the possible compromised do-
mains if given entry network domain vi and attack ak.

As shown in Algorithm 1, the compromising sub-graph is generated
by 2 steps. i) Adjusting the adjacency matrix of the network graph, by
removing the node (the domain) in the adjacency matrix whose type’s
vulnerabilities have no intersection with attack ak; and ii) traversing the
graph with the adjusted adjacency matrix by using breadth-first search
(BFS) to get all the domains that can be reached in the graph traversal.
Then, we get 𝒢

′ ak

i = (𝒱
′ ak
i , ℰ

′ ak

i), which is the generated compromising
sub-graph. Fig. 5a depicts a network with 6 domains where v1, v3, and v6
use the “black” type, v2, v4 use the “gray” type, and v5 uses the “white”
type. In Fig. 5b, v2 is the only element in 𝒱′ a1

2 , and in Fig. 5c, 𝒱′ a2

1 contains
v1, v3, v6. The domain compromised ratio is formulated as

rak
i (X) =

|𝒱
′ ak

i |

|𝒱|
. (2)

Algorithm 1
Ratio sub-graph generation.

Fig. 5. Compromising sub-graph demonstration. In Fig. 5b, the compromising sub-graph only contains v2, and the compromised ratio is 1
6. In Fig. 5c, the

compromising sub-graph contains v1, v3, and v6, and the compromised ratio is 3
6 = 1

2.

W. Feng et al.

Journal of Network and Computer Applications 178 (2021) 102969

6

4.2.3. Compromising expectation
In this subsection, we propose the compromising expectation to mea-

sure the overall compromising possibility of the network. The compro-
mising expectation is formulated as a mathematical expectation shown
below

e(X) =
1
|𝒱|

∑

vi∈𝒱

∑

ak∈𝒜

∑

sj∈𝒮

rak
i (X)Pjxij, (3)

where rak
i (X) is the domain compromise ratio of domain vi under attack

ak, and Pj is the attack probability of controller type sj under all attacks.

4.3. Constraints

4.3.1. Maximum compromising possibility
Security requirements may vary between network to network.

Therefore, a minimum security level (or put another way, a maximum
compromising possibility) can be set by the network operator to guar-
antee the least security requirement of the network. Thus we have

1
|𝒱|

∑

vi∈𝒱

∑

a∈𝒜

∑

sj∈𝒮

ra
i (X)Pjxij ≤ Emax, (4)

where Emax is the maximum required compromising possibility of the
network.

4.3.2. Single controller type constraint
Only one controller type can be used for each domain in the network.

This is written as
∑

sj∈S
xij = 1,∀vi ∈ 𝒱. (5)

4.4. Objective function

Our objective is to minimize the overall cost of controller deploy-
ment for each domain in the network. Therefore, the objective function
is written as follows

obj =
∑

vi∈𝒱

∑

sj∈S
xijcj. (6)

4.5. Problem formulation

The goal of the SCCD problem is to find an optimal controller type
deployment scheme between domains in 𝒱 and types in 𝒮 by judiciously
placing the suitable type to the domain, which reaches the target of
minimizing the overall cost under the security requirement. Conse-
quently, we formulate the SCCD problem as follows:

minx
∑

vi∈𝒱

∑

sj∈𝒮

xijcj

s.t. (4)(5),
xij ∈ {0, 1},

vi ∈ 𝒱, sj ∈ 𝒮,

(P)

where
{
cj
}

are constants, and
{
xij
}

are designed variables. In the SCCD
problem, the objective function is linear, and variables are binary in-
tegers. Thus, this problem is an Integer Linear Programming (ILP)
problem.

5. Solution

In this section, we first propose the analysis on the complexity of the
SCCD problem and then present a heuristic algorithm called BAGUETTE to
solve the problem.

5.1. Complexity analysis

In this subsection, we reduce a special case of the SCCD problem to
the Graph Coloring Problem (GCP) (Jensen and Toft, 2011) and prove the
NP-hardness of the SCCD problem.

Theorem 1. For a special case with the following four conditions, the
Secure and Cost-effective Controller Deployment is NP-hard.

(1) Each network domain can only be deployed with one type of
controller.

(2) Vulnerabilities of each type are different.
(3) The compromising expectation of the network is zero.
(4) The costs of all types of controllers are the same.

Proof 1. We first introduce the GCP problem. The GCP problem aims to
minimize the number of colors used for a graph node, where each node has
one color, and adjacent nodes have different colors. A typical formulation of
the GCP problem is shown as follows.

minx
∑

j
wj

s.t.
∑

j
xij = 1,∀i ∈ V,

xij ∈ {0, 1},
∀xuj + xvj ≤ 1, (u, v) ∈ E, j ∈ C,

xij ≤ wj, ∀i ∈ V, j ∈ C,

xuj + xvj ≤ wj,∀(u, v) ∈ E, j ∈ C,

(7)

where G = (V, E) is a graph. V and E are vertex and edge sets, respectively. C
is the color set. xij = 1 denotes color j is mapped on vertex i, and 0 otherwise.
(u, v) denotes an edge in the edge set E. wj = 1 if at least one vertex is mapped
with color j, and 0 otherwise. It has been proved that the GCP is NP-hard
(Jensen and Toft, 2011).

We then prove for a special case under conditions (1)–(4), problem P
and the GCP are equivalent. Given condition (1), only one version can be
mapped to one network node. Thus, we have

xij ≤ wj, ∀vi ∈ 𝒱, sj ∈ 𝒮,

xv1 j + xv2 j ≤ 1, ∀(v1, v2) ∈ ℰ, sj,∈ 𝒮,
(8)

where wj = 1 denotes that at least one domain uses type sj, and otherwise wj
= 0. Given condition (2), ∀sj1 , sj2 ∈ 𝒮, we have Fj1 ∩ Fj2 = ∅. Thus, given
condition (3), the system has the maximum security and the minimum
compromising expectation. Each attack can only compromise one domain’s
controller because if an attack compromises a domain’s controller, it cannot
propagate to the succeeding domains. Thus, we have

W. Feng et al.

Journal of Network and Computer Applications 178 (2021) 102969

7

e(X)=
1
|𝒱|

∑

vi∈𝒱

∑

a∈𝒜

∑

sj∈𝒮

ra
i (X)Pjxij =

1
|𝒱|

∑

vi∈𝒱

⎛

⎜
⎜
⎝

⃒
⃒
⃒
⃒

⋃

ak∩ℱ j∕=∅
{ak}

⃒
⃒
⃒
⃒

|𝒱|
×Pj×xij

⎞

⎟
⎟
⎠

=

⃒
⃒
⃒
⃒

⋃

ak∩ℱ j∕=∅
{ak}

⃒
⃒
⃒
⃒

2

|𝒱|
2
|𝒜|

, (9)

is a constant. Therefore, given an edge (v1,v2) ∈ ℰ, we have

∀sj ∈ 𝒮, xv1 j + xv2 j ≤ wj. (10)

For condition (4), let the cost of controllers be a constant c, thus problem P
can be reformulated as

minw
∑

sj∈𝒮

c × wj

s.t. (5)(8)(10),
wj ∈ {0, 1}

(P’)

Problem P′ aims to minimizing the total number of types at the maximum
security requirement (1

|𝒱|
), which is the adjacent domains having different

controller types. Problem P’ is a special case of the GCP.Since the GCP
is NP-hard, therefore, we can conclude that:

Theorem 2. The Secure and Cost-effective Controller Deployment problem
is NP-hard.

Algorithm 2. The BAGUETTE algorithm.

5.2. The BAGUETTE algorithm

The complexity of the SCCD problem comes from both the attack
propagations among network domains, and vulnerabilities can share
between controller types. Due to the NP-hard complexity, we present an
efficient heuristic algorithm called BAGUETTE to solve the SCCD problem.

As shown in Fig. 6, the idea behind the BAGUETTE algorithm is to
replace the controller types of critical domain for mitigating attacks.
When critical domains are adjacent to each other, they should use
different controller types with the highest vulnerability differentiation to
prevent the attack from propagating. BAGUETTE follows three steps to
solve the problem as follows.

(1) Preparing critical network domains. As depicted in Fig. 6a,
BAGUETTE identifies critical network domains based on their de-
grees and stores the critical domains in an array in the order of
each domain should be processed. This is achieved by sorting the
domain nodes based on their degrees in the descendent order.

(2) Preparing controller type candidates. The objective of the
SCCD problem is to minimize the deployment cost. Hence,
BAGUETTE sorts the types based on their costs from low to high,
which ensures cheaper controller types can be prioritized
considered in the mapping procedure (see Fig. 6a).

(3) Mapping controller types. BAGUETTE repeatably picks a critical
domain from the sorted critical domain array and selects a type of
the controller for it until the whole network satisfies the security
requirement (shown in Fig. 6b–d). BAGUETTE maintains a current
global minimum security mapping, and whenever a domain
candidate is mapped with a controller type, there is a new map-
ping X. BAGUETTE compares the current minimum compromising
expectation (the security requirement) with X’s expectation in
the process to get the minimum compromise expectation of all
tested mappings if BAGUETTE cannot satisfy the security
requirement.

The controller type selection procedure has the following 6 sub-
routines. i) Get all types of the current selected domain’s adjacent do-
mains. ii) Calculate a new array of controller types, by removing the
adjacent types as 𝒮

′

. iii) Get the common vulnerabilities of the adjacent
domains as ℱ′ . iv) For each type sj in 𝒮

′

, calculate the vulnerability
variation that is the percentage of the number of common vulnerabilities
between ℱ j and ℱ′ , over the number of vulnerabilities of ℱ j. v) Map the
type with the lowest vulnerability variation calculated in Step iv) to the
critical domain. vi) Calculate the compromising expectation of the
network, and if the value satisfies the requirement, stop. Otherwise, pick
the next critical domain, and go to Step i).

5.3. Analysis of BAGUETTE

The BAGUETTE algorithm is detailed in Algorithm 2. Lines 1–7 generate
the order of domains whose controller types to be changed. The time
complexity of this sub-procedure is O(|N|log |N|) as it leverages sorting.
In Lines 2–6, it first generates the degree vector D based on the adja-
cency matrix of the network, and it then sorts the domains based on the
degree in descending order. Lines 8–9 prepare the different controller
types by sorting the types based on their costs. The time complexity of
preparing controller types candidates is also O(|𝒮|log |𝒮|) because of the
use of sorting. Lines 10–31 map types to domains. The key idea is to

W. Feng et al.

Journal of Network and Computer Applications 178 (2021) 102969

8

choose the type that has the biggest vulnerability differentiation of all
adjacent domains. The cost of the deployment is considered when
multiple type candidates have the same vulnerability variation, and we
choose the one with a smaller cost. Lines 11–15 get all the types and
vulnerabilities of adjacent domains. Lines 18–23 calculate the ratio of
common vulnerabilities of the current type and the types of adjacent do-
mains’ controllers, to the total vulnerabilities of the type of adjacent do-
mains’ controllers. We choose the type with the minimum ratio. Finally,
we calculate the compromise expectation based on the current mapping
X. If the mapping satisfies the requirement, the algorithm stops.
Otherwise, it keeps mapping the next domain until all domains are
processed. The compromise expectation is calculated with Equation (3),
and domain compromised ratios are calculated with Algorithm 1 that
traverse the network. Hence, the time complexity of calculating the
compromise expectation is O((|𝒱| + |ℰ|)|𝒱||𝒜|), and the time complexity
of Algorithm 2 is O((|𝒱| + |ℰ|)|𝒱|

2
|𝒜|), which is a polynomial time.

Online algorithms are not necessary for the SCCD problem as it is in the
network deployment procedure and will not influence the running
performance. Hence, we believe BAGUETTE is adequate to solve the
problem.

6. Simulation

In this section, we present the simulation of BAGUETTE to evaluate its
performance. We first introduce the simulation setup information and
comparison algorithms. We then compare the performances of different

algorithms under various real-world topologies and evaluate BAGUETTE’s
stability under different sizes of topologies. Simulations results show
that the BAGUETTE algorithm achieves near-optimal performance under
non-full mesh topologies and performs stably under 80% of the topol-
ogies. We do not evaluate the time consumption due to the non-
polynomial time complexities of optimal and SecureMost solutions.

6.1. Simulation setup

We first use Arpanet (Topology Zoo), GlobalCenter (The Center,
LLC), and HEAnet (HEAnet) from Topology Zoo (Knight et al., 2011) to
conduct the simulation. Topology Zoo is a collection of 262 real-world
backbone network topologies, and each topology is provided with a
gml file. We use a popular python graph library python-igraph
(Csardi Nepuszet al., 2006) to read gml files. Both Arpanet and Glob-
alCenter have 9 nodes, and GlobalCenter is a full-meshed network with
36 links. HEAnet has 7 nodes. In the simulation, each node in the to-
pology represents a domain, which deployed with one controller. There
are 4 controller types in total. Originally, controllers of each domain use
type s1. Each controller type contains multiple vulnerabilities in the
simulation, we randomly generate vulnerabilities for each type, and the
number of vulnerabilities is random in the range of (0, 6). Besides, we
have surveyed many commercial SDN controllers (Cisco Systems et al.,
Cisc; Huawei Technologies Co.; Juniper Networks et al., N; Tele-
fonaktiebolagetEr), and the prices of popular commercial SDN control-
lers range from $1000 to $5000. Thus, we randomly generate a cost for

Fig. 6. The BAGUETTE algorithm demonstration.

W. Feng et al.

Journal of Network and Computer Applications 178 (2021) 102969

9

every controller type in the range of (1000, 5000). We generate attacks
by calculating the subset of total vulnerability set ℱ , and the total
number of attacks is 26 − 1 (the empty set is removed). We use Python to
implement the simulation.

6.2. Compared algorithms

We compare the following 4 algorithms. The reason we do not
compare BAGUETTE with existing GCP solutions is that the GCP solutions
are insufficient to solve BAGUETTE (see Section 5.1).

• Legacy: this is the default controller type deployment where all
controllers use the default type.

• Optimal: this is the optimal solution of the SCCD problem, which
minimizes the overall controller deployment cost under certain
network security requirements. Since Equation (2) requires graph
traversal, common ILP solvers like GUROBI (Gurobi) cannot help.
We first pre-generate possible mappings and then choose the best one
to reduce the calculation time.

• SecurityMost: this algorithm calculates the controller deployment
scheme with the minimum compromise expectation. We also pre-
generate all mappings and choose the one with the minimum
compromise expectation.

• BAGUETTE: this algorithm is shown in Algorithm 2.

6.3. Simulation results

In this subsection, we first use three smaller topologies to show that
BAGUETTE achieves near-optimal performance. We then evaluate the
performance on different topologies. We do not conduct experiments on
bigger topologies (number of nodes greater than 10) due to the NP-
hardness of Optimal and SecurityMost algorithms.

6.3.1. Algorithm comparison
We compare the security and overall cost performances of Legacy,

Optimal, BAGUETTE, and SecurityMost algorithms under different security
(compromise expectation) requirements ranging from 0.1 to 0.9. We do
not use larger topology since they are time-consuming due to the
complexity of Optimal and SecurityMost. While BAGUETTE is tolerable to
all scale of topologies thanks to the polynomial time complexity.

Fig. 7 shows the security and cost performances of the 4 algorithms
under the 3 topologies. In a nutshell, BAGUETTE achieves up to 12.6x
security enhancement compared with the legacy setup and as low as
11.1% cost of SecurityMost. Legacy has no security guarantee, and
SecurityMost can stop most attacks while introduces an exorbitant cost.
In Fig. 7a–c, Optimal satisfies all the security requirements in each tested
topology. BAGUETTE satisfies 100% tests on HEAnet and approxi-
mately 80% tests on Arpanet. The results also indicate that BAGUETTE

does not perform well on GlobalCenter when the security requirement is
strict (low compromise expectation). Fig. 7c shows that BAGUETTE fails to
satisfy the security requirement when the required compromise expec-
tation is below 0.7. This is because BAGUETTE prefers to choose nodes with
the most number of degrees to replace controller types, but GlobalCenter
network is a full-meshed network, and the number of degrees of each
node is the same. To this end, BAGUETTE can only sequentially replace
types of nodes one by one until all 4 types of SDN controllers are utilized.

To better understand the performance between Optimal and
BAGUETTE, we define the Performance Likelihood (PL) metric. The PL
metrics measures the portion of the performance difference between
BAGUETTE and the optimal solution over the total performance improve-
ments (e.g., from no security enhancements to the most secure solution
and from the most secure solution that has the maximum costs to the no
replacement solution). It is the absolute difference between two algo-
rithms over the difference of the minimum and maximum performances,
as follows.

PL =

⃒
⃒pA1 − pA2

⃒
⃒

pmax − pmin
, (11)

where pA1 and pA2 are the performances of algorithms A1 and A2. pmax
and pmin are the maximum and minimum performances. pA1 , pA2 , pmax

and pmin are at the same compromise expectation requirement. For
example, the security PL of BAGUETTE and Optimal is represented as the
absolute difference of compromise expectations of BAGUETTE and Optimal
over the absolute difference of compromise expectations of Legacy and
SecurityMost. A PL value is a floating number between 0 and 1. When
the performances are similar, the value approaches to 0.

Fig. 7 shows that the average security PL is 0.12 in all tests, and
BAGUETTE and Optimal have the same security performance in almost half
(46.7%) of all the tests. In Fig. 7e, f, and d, the cost PL between Optimal
and BAGUETTE is 0.11 of all tests, and BAGUETTE and Optimal have the same
cost performance in 42.8% of all the tests. We can conclude that
BAGUETTE achieves near-optimal performance under non-full mesh
topologies. Although both Arpanet and GlobalCenter have 9 nodes
(domains), their security and cost performances are different. This is
because different topological structures contribute to different SDN
controller deployment schemes that employ different types of
controllers.

6.3.2. Tests on different topology sizes
We run BAGUETTE on 69 topologies whose numbers of nodes ranging

from 5 to 92. We use different security requirements to conduct the
simulations. We run 20 trials for each topology and security requirement
ratio combination. Each trial has distinct versions and vulnerabilities
setup since they are generated randomly.

Fig. 8 shows the experimental results, and Fig. 8a depicts the average
compromise expectation for all test topologies under security re-
quirements ranging from 0.1 to 0.9. BAGUETTE satisfies 100% of the
average security performance under security requirements 0.5 and
above in all topologies, 85% of the topologies under security require-
ment 0.4, 50% of the topologies under security requirement 0.3, 40% for
security requirement 0.2, and 25% for security requirement 0.1. There
are some “hills” in the figure (e.g., when the number of nodes is 30, 36,
40, 59, and 88). We analyze the corresponding topologies and find that
these topologies are star topologies (or variations, e.g., several connected
star networks). Since BAGUETTE tends to replace types for the “critical”
nodes who have the most degrees, it will first replace the controller type
for the “hub” nodes in the network. However, we find that the number of
“hub” nodes is usually smaller than 5. Hence, after replacing types for all
“hubs” in the network, further replacements of other nodes have little
benefits on the security improvement.

Fig. 8b shows the randomly chosen topology sizes due to space
limitation. The results indicate that BAGUETTE performs stably on 80% of
the cases with under 0.1 standard deviations. Hence, we believe
BAGUETTE achieves stable performance. As shown in Fig. 8c, the
average cost of 0.5 security requirement is only half of that of security
requirement 0.1 setup, and stricter security requirements result in a
higher cost. Standard deviations of costs are bigger on large topologies
because they require more network domains to change the type of
controllers, but BAGUETTE can reduce the cost of distinct controller type
deployment for each domain. For example, in the Viatel topology
(Metter et al., 2015) (with 92 nodes), even the security requirement 0.1
can reduce the cost to only 20% of completely using distinct controller
types for each domain.

7. Related works

To the best of our knowledge, this is the first work that focuses on
leveraging the benefit of node heterogeneity, which uses controller types
to mitigate attacks propagating to other domains. However, existing
Multi-domain SDN work focusing on multi-domain controller

W. Feng et al.

Journal of Network and Computer Applications 178 (2021) 102969

10

communication, traffic engineering, and controller placement. In this
section, we study these multi-domain SDN work and SDN oriented se-
curity researches.

7.1. Multi-domain SDN controllers communications

Onix (Koponen et al., 2010) is the first production-level distributed
SDN controller. Each Onix replica controls many (a domain of) SDN
switches and generates the topology of the domain. Onix replicas then
share the local domain topology information to build a global view of
the network across all controllers. ElastiCon (Dixit et al., 2013) ad-
dresses the load unbalances problem of controllers in the multi-domain
scenario as the fixed “controller – switch” mapping cannot adjust to the
changing traffic load. ElastiCon employs an elastic controller pool with a
distributed data store that collects the network status. The controller
pool can dynamically grow or shrink based on the traffic condition, and
it manages the switch migration to guarantee the liveness and safety.

7.2. Multi-domain SDN traffic engineering and resiliency

B4 (Jain et al., 2013), SWAN (Hong et al., 2013), and RetroFlow
(Guo et al., 2019) are SD-WAN schemes, which leverages the
multi-domain SDN. B4 and SWAN are built for traffic engineering. B4
can achieve near 100% link utilization with the global decision and
fine-grained traffic class control that prioritizes the critical traffic to be
successfully transmitted and uses the less important traffic to fill the
“gaps”. SWAN can reach 70% link utilization without blocking critical
control messages by reserving the bandwidth for the critical control
messages. RetroFlow considers the resilience of the multi-domain SDN
network, and when one controller fails, how to remap the SDN switches
to existing controllers in other domains with the minimal performance
overhead.

7.3. Controller placement in multi-domain SDN

The key to controller placement is to partition the network and find
the optimal mapping between switches and controllers under certain
conditions. Heller et al. (2012) first propose the controller placement
problem and answers the questions that given a network topology, how
many controllers are needed, and how to place them. They leverage the
“switch – controller” latency as the key metric and formulate the
problem as an ILP problem. Xu et al. (2019) propose SDN switch
migration schemes to achieve load balance among SDN controllers with
small migration costs because loads of controllers may become uneven
as time goes by.

7.4. Attack mitigation in SDN

Many SDN security researches have been conducted. DASON
(Vizarreta et al., 2020) studies bugs in open source SDN controller sys-
tems and outages resulted from the bugs. CLé (Feng et al., 2019) proposes
to virtualize the SDN devices as security middleboxes in the hybrid SDN
deployment to mitigate attacks. Xu et al. (2017) present the flow table
overflow attack in SDN, and they identify the attack pattern and then use
the token bucket model to mitigate the attacks. SAFETY (Kumar et al.,
2018) is a novel entropy-based TCP flood attack detection system that
targets on “SYN-flood” from the data plane to the control plane. Anti-
dose (Simpson et al., 2018) proposes the Autonomous System (AS) level
Distributed Denial of Service (DDoS) filtering mechanism to avoid ASes
being exposed to additional attacks. However, none of the work con-
siders the relationship between controller attacks and controller types as
well as multi-domain attack propagations.

Fig. 7. Legacy, Optimal, BAGUETTE, and SecurityMost performances under different security requirements. BAGUETTE achieves near-optimal performance under non-full
mesh topologies.

W. Feng et al.

Journal of Network and Computer Applications 178 (2021) 102969

11

8. Conclusion and future work

In this paper, we have identified the SCCD problem in multi-domain
commercial SDN deployment, which aims to achieve the security
requirement with a minimum cost. We have proved the NP-hardness of
the SCCD problem and have proposed the BAGUETTE algorithm to effi-
ciently solve it. BAGUETTE judiciously chooses critical domains and de-
ploys selected types of SDN controllers for them to mitigate the attack
propagations. We have conducted simulations using real-world topol-
ogies to evaluate BAGUETTE. Experimental results have shown that
BAGUETTE can stably achieve near-optimal performance under non-full
mesh topologies with up to 12.6x security enhancement and down to
11.1% cost of the most secure solution. By presenting BAGUETTE, we hope
it can motivate the network community to consider and utilize the
benefits of node heterogeneity.

To advance the SCCD problem and the BAGUETTE algorithm, our future
work consists of three parts: i) improving BAGUETTE for achieving better
performance on full-mesh topologies and spine-leaf topologies that have
identical degrees of nodes, ii) identify different scenarios and applica-
tions that can apply BAGUETTE to solve (e.g., considering performance
overhead introduced by different types of controllers), and iii) vali-
dating controller attack and attack propagations on real-world network
testbeds.

Credit author statement

Wendi Feng: Conceptualization, Methodology, Software, Validation,
Writing- original draft. Chuanchang Liu: Resources, Project adminis-
tration. Bo Cheng: Supervision. Junliang Chen: Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported in part by the National Key Research and
Development Program of China under Grant 2018YFB1003804, Natural
Science Foundation of China under Grant 61921003, 61972043. We
thank Prof. Zhi-Li Zhang, Dr. Zehua Guo, and Dr. Gang Wang for their
valuable comments and recommendations. We also thank the anony-
mous reviewers for their constructive comments. Wendi Feng gratefully
acknowledge the financial support from China Scholarship Council.

Fig. 8. BAGUETTE performance under different size of topologies and different security requirements.

W. Feng et al.

Journal of Network and Computer Applications 178 (2021) 102969

12

References

Arashloo, M.T., Koral, Y., Greenberg, M., Rexford, J., Walker, D., 2016. Snap: stateful
network-wide abstractions for packet processing. In: Proceedings of the 2016 ACM
SIGCOMM Conference, pp. 29–43.

Bilge, L., Dumitraş, T., 2012. Before we knew it: an empirical study of zero-day attacks in
the real world. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12. ACM, Raleigh, North Carolina, USA,
pp. 833–844.

Boccardi, F., Heath, R.W., Lozano, A., Marzetta, T.L., Popovski, P., 2014. Five disruptive
technology directions for 5g. IEEE Commun. Mag. 52 (2), 74–80.

Bonomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing. ACM, pp. 13–16.

Chica, J.C.C., Imbachi, J.C., Vega, J.F.B., 2020. Security in sdn: a comprehensive survey.
J. Netw. Comput. Appl. 159, 102595. https://doi.org/10.1016/j.jnca.2020.102595.

Choi, S., Burkov, B., Eckert, A., Fang, T., Kazemkhani, S., Sherwood, R., Zhang, Y.,
Zeng, H., 2018. Fboss: building switch software at scale. In: Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication. SIGCOMM
’18, ACM, New York, NY, USA, pp. 342–356.

Cisco Systems, Inc.. Cisco open SDN controller. https://www.cisco.com/c/en/us/produ
cts/cloud-systems-management/open-sdn-controller/index.html.

Csardi, G., Nepusz, T., et al., 2006. The igraph software package for complex network
research. InterJournal, Complex Syst. 1695 (5), 1–9.

Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., Kompella, R., 2013. Towards an elastic
distributed sdn controller. In: Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13. Association for
Computing Machinery, pp. 7–12. https://doi.org/10.1145/2491185.2491193.

Feng, W., Zhang, Z.-L., Liu, C., Chen, J., 2019. Clé: enhancing security with
programmable dataplane enabled hybrid SDN. In: Proceedings of the 15th
International Conference on Emerging Networking EXperiments and Technologies,
CoNEXT ’19. Association for Computing Machinery, pp. 76–77. https://doi.org/
10.1145/3360468.3368185.

Fuetsch, A.. The future of AT&T 5G. https://about.att.com/innovationblog/2020/09/fut
ure_att_5g.html.

Guo, Z., Feng, W., Liu, S., Jiang, W., Xu, Y., Zhang, Z., 2019. Retroflow: maintaining
control resiliency and flow programmability for software-defined wans. In:
Proceedings of the International Symposium on Quality of Service, IWQoS 2019,
Phoenix, AZ, USA, June 24-25, 2019., pp. 1:1–1:10.

Gurobi. Gurobi optimizer, gurobi. http://www.gurobi.com.
Hayes, B., 2008. Cloud computing. Commun. ACM 51 (7), 9–11.
HEAnet, HEAnet - Ireland’s national research & education network, https://www.

heanet.ie.
Heller, B., Sherwood, R., McKeown, N., 2012. The controller placement problem.

SIGCOMM Comput. Commun. Rev. 42 (4), 473–478. https://doi.org/10.1145/
2377677.2377767.

Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., Wattenhofer, R.,
2013. Achieving high utilization with software-driven wan. In: Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13. Association for
Computing Machinery, pp. 15–26. https://doi.org/10.1145/2486001.2486012.

Huawei Technologies Co., Ltd.. Agile controller. https://e.huawei.com/uk/products/e
nterprise-networking/sdn-controller/agile-controller.

Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A., 2013. B4:
experience with a globally-deployed software defined wan. In: Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13. ACM, New York,
NY, USA, pp. 3–14.

Jensen, T.R., Toft, B., 2011. Graph Coloring Problems, vol. 39. John Wiley & Sons.
Juniper Networks, Inc., NorthStar controller, https://www.juniper.net/us/en/products-

services/sdn/northstar-network-controller/.
Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M., 2011. The internet

topology zoo. IEEE J. Sel. Area. Commun. 29 (9), 1765–1775.
Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ramanathan, R.,

NEC, Y.I., NEC, H.I., NEC, T.H., Shenker, S., 2010. Onix: a distributed control
platform for large-scale production networks. In: Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, Berkeley, CA, USA,
pp. 351–364.

Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.,
2015. Software-defined networking: a comprehensive survey. Proc. IEEE 103 (1),
14–76.

Kumar, P., Tripathi, M., Nehra, A., Conti, M., Lal, C., 2018. Safety: early detection and
mitigation of tcp syn flood utilizing entropy in sdn. IEEE Trans. Netw. Serv. Manag.
15 (4), 1545–1559. https://doi.org/10.1109/TNSM.2018.2861741.

Li, Z., Zou, D., Xu, S., Jin, H., Qi, H., Hu, J., 2016. Vulpecker: an automated vulnerability
detection system based on code similarity analysis. In: Proceedings of the 32nd

Annual Conference on Computer Security Applications, ACSAC ’16. ACM,
pp. 201–213.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., 2008. Openflow: enabling innovation in campus networks.
Comput. Commun. Rev. 38 (2), 69–74.

Metter, C., Gebert, S., Lange, S., Zinner, T., Tran-Gia, P., Jarschel, M., 2015. Investigating
the impact of network topology on the processing times of sdn controllers. In: 2015
IFIP/IEEE International Symposium on Integrated Network Management (IM),
pp. 1214–1219.

Phemius, K., Bouet, M., Leguay, J., 2014. DISCO: distributed multi-domain SDN
controllers. In: 2014 IEEE Network Operations and Management Symposium.
(NOMS), pp. 1–4.

Scott-Hayward, S., O’Callaghan, G., Sezer, S., 2013. Sdn security: a survey. In: 2013 IEEE
SDN for Future Networks and Services (SDN4FNS), pp. 1–7.

Scott-Hayward, S., Natarajan, S., Sezer, S., 2016. A survey of security in software defined
networks. IEEE Commun. Surv. Tutorials 18 (1), 623–654.

Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., 2016. Edge computing: vision and challenges.
IEEE Internet Things J. 3 (5), 637–646.

Simpson, S., Shirazi, S.N., Marnerides, A., Jouet, S., Pezaros, D., Hutchison, D., 2018. An
inter-domain collaboration scheme to remedy ddos attacks in computer networks.
IEEE Trans. Netw. Serv. Manag. 15 (3), 879–893. https://doi.org/10.1109/
TNSM.2018.2828938.

Song, S., Park, H., Choi, B., Choi, T., Zhu, H., 2017. Control path management framework
for enhancing software-defined network (SDN) reliability. IEEE Trans. Netw. Serv.
Manag. 14 (2), 302–316.

Telefonaktiebolaget LM Ericsson, Ericsson Cloud SDN, https://www.ericsson.com/en/
portfolio/digital-services/cloud-infrastructure/cloud-sdn.

Teo, Z., Birman, K., Renesse, R.V., 2016. Experience with 3 sdn controllers in an
enterprise setting. In: 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshop. DSN-W, pp. 97–104.

The Center, LLC, The global center for nonprofit excellence, https://www.theglobalcent
er.net.

Topology Zoo, Arpanet 1970-6, http://topology-zoo.org/maps/Arpanet19706.jpg.
Vizarreta, P., Trivedi, K., Mendiratta, V., Kellerer, W., Machuca, C.M., 2020. DASON:

Dependability Assessment Framework for Imperfect Distributed SDN
Implementations. IEEE Transactions on Network and Service Management, p. 1, 1.

Xu, T., Gao, D., Dong, P., Foh, C.H., Zhang, H., 2017. Mitigating the table-overflow attack
in software-defined networking. IEEE Trans. Netw. Serv. Manag. 14 (4), 1086–1097.
https://doi.org/10.1109/TNSM.2017.2758796.

Xu, Y., Cello, M., Wang, I., Walid, A., Wilfong, G., Wen, C.H., Marchese, M., Chao, H.J.,
2019. Dynamic switch migration in distributed software-defined networks to achieve
controller load balance. IEEE J. Sel. Area. Commun. 37 (3), 515–529.

Yap, K.-K., Motiwala, M., Rahe, J., Padgett, S., Holliman, M., Baldus, G., Hines, M.,
Kim, T., Narayanan, A., Jain, A., Lin, V., Rice, C., Rogan, B., Singh, A., Tanaka, B.,
Verma, M., Sood, P., Tariq, M., Tierney, M., Trumic, D., Valancius, V., Ying, C.,
Kallahalla, M., Koley, B., Vahdat, A., 2017. Taking the edge off with espresso: scale,
reliability and programmability for global internet peering. In: Proceedings of the
Conference of the ACM Special Interest Group on Data Communication, SIGCOMM
’17. Association for Computing Machinery, pp. 432–445. https://doi.org/10.1145/
3098822.3098854.

Wendi Feng is a PhD candidate with Professor Junliang Chen at State Key Laboratory of
Network and Switching Technology at Beijing University of Posts and Telecommunica-
tions. He is co-advised by Prof. Zhi-Li Zhang at the University of Minnesota - Twin Cities.
His research interests include mobile computing, cloud computing, computer networking,
software-defined network, and network function virtualization.

Chuanchang Liu is currently an Associate Professor with the State key Laboratory of
Networking and Switching Technology, Beijing University of Posts and Telecommunica-
tions. His current research interests include mobile device security, cloud computing, and
oriented-service computing.

Bo Cheng is currently a Professor and vice director with the State key Laboratory of
Networking and Switching Technology, Beijing University of Posts and Telecommunica-
tions. His current research interests include mobile device security, cloud computing,
internet of things and big data analysis, network service and intelligence.

Junliang Chen is currently a Professor and the Academic Leader with the State key
Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications. He is a member of the Chinese Academy of Science and the Chinese
Academy of Engineering, and a fellow of the China Computer Federation. His current
research interests include service-oriented computing and service generation system.

W. Feng et al.

http://refhub.elsevier.com/S1084-8045(20)30420-3/sref1
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref1
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref1
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref2
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref2
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref2
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref2
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref3
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref3
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref4
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref4
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref4
https://doi.org/10.1016/j.jnca.2020.102595
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref6
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref6
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref6
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref6
https://www.cisco.com/c/en/us/products/cloud-systems-management/open-sdn-controller/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/open-sdn-controller/index.html
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref8
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref8
https://doi.org/10.1145/2491185.2491193
https://doi.org/10.1145/3360468.3368185
https://doi.org/10.1145/3360468.3368185
https://about.att.com/innovationblog/2020/09/future_att_5g.html
https://about.att.com/innovationblog/2020/09/future_att_5g.html
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref12
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref12
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref12
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref12
http://www.gurobi.com
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref14
https://www.heanet.ie
https://www.heanet.ie
https://doi.org/10.1145/2377677.2377767
https://doi.org/10.1145/2377677.2377767
https://doi.org/10.1145/2486001.2486012
https://e.huawei.com/uk/products/enterprise-networking/sdn-controller/agile-controller
https://e.huawei.com/uk/products/enterprise-networking/sdn-controller/agile-controller
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref19
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref19
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref19
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref19
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref19
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref20
https://www.juniper.net/us/en/products-services/sdn/northstar-network-controller/
https://www.juniper.net/us/en/products-services/sdn/northstar-network-controller/
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref22
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref22
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref23
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref23
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref23
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref23
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref23
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref24
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref24
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref24
https://doi.org/10.1109/TNSM.2018.2861741
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref26
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref26
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref26
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref26
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref27
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref27
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref27
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref28
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref28
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref28
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref28
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref29
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref29
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref29
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref30
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref30
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref31
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref31
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref32
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref32
https://doi.org/10.1109/TNSM.2018.2828938
https://doi.org/10.1109/TNSM.2018.2828938
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref34
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref34
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref34
https://www.ericsson.com/en/portfolio/digital-services/cloud-infrastructure/cloud-sdn
https://www.ericsson.com/en/portfolio/digital-services/cloud-infrastructure/cloud-sdn
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref36
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref36
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref36
https://www.theglobalcenter.net
https://www.theglobalcenter.net
http://topology-zoo.org/maps/Arpanet19706.jpg
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref39
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref39
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref39
https://doi.org/10.1109/TNSM.2017.2758796
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref41
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref41
http://refhub.elsevier.com/S1084-8045(20)30420-3/sref41
https://doi.org/10.1145/3098822.3098854
https://doi.org/10.1145/3098822.3098854

	Secure and cost-effective controller deployment in multi-domain SDN with Baguette
	1 Introduction
	2 Background
	2.1 Software-defined networks
	2.2 Multi-domain SDN
	2.3 Openness of SDN brings new opportunities

	3 Attack model and motivation
	3.1 Attack model and real-world examples
	3.1.1 Unauthorized access attack
	3.1.2 Controller hijacking attack

	3.2 Motivation
	3.2.1 Insecure single controller type deployment
	3.2.2 Curse of arbitrary deployment
	3.2.3 Security and cost-effective deployment

	4 Problem formulation
	4.1 System description
	4.2 Attack metrics
	4.2.1 Attack probability
	4.2.2 Domain compromised ratio
	4.2.3 Compromising expectation

	4.3 Constraints
	4.3.1 Maximum compromising possibility
	4.3.2 Single controller type constraint

	4.4 Objective function
	4.5 Problem formulation

	5 Solution
	5.1 Complexity analysis
	5.2 The Baguette algorithm
	5.3 Analysis of baguette

	6 Simulation
	6.1 Simulation setup
	6.2 Compared algorithms
	6.3 Simulation results
	6.3.1 Algorithm comparison
	6.3.2 Tests on different topology sizes

	7 Related works
	7.1 Multi-domain SDN controllers communications
	7.2 Multi-domain SDN traffic engineering and resiliency
	7.3 Controller placement in multi-domain SDN
	7.4 Attack mitigation in SDN

	8 Conclusion and future work
	Credit author statement
	Declaration of competing interest
	Acknowledgements
	References

