BATCHSKETCH: A “Network-server” Aligned Solution
for Efficient Mobile Edge Network Sketching

Wendi Feng Chuanchang Liu Junliang Chen
BISTU BUPT BUPT
China China China
wendifeng@bistu.edu.cn lee3265@bupt.edu.cn chjl@bupt.edu.cn

Abstract

Heavy flow identification is essential for discovering po-
tential adversarial activities in mobile edge networks. How-
ever, state-of-the-art falls short in accuracy with approxima-
tion algorithms and unbounded memory usages with precise
measurement. To this end, we introduce BATCHSKETCH, a
“network — server” aligned solution to achieve both high
accuracy and low memory usage. The intelligence behind
is that BATCHSKETCH first conducts coarse-grained filtering
from the switch with bounded memory and computation re-
sources, and it then sends the filtered flows to the RDMA-link
attached server with plenty of memory for accurate mea-
surement. Our primary experimental results indicate that
the filter on the switch can filter 99% of non-heavy flows, re-
markably reducing the memory usage for the measurement.

Keywords

Mobile edge network, network measurement, sketching

ACM Reference Format:

Wendi Feng, Chuanchang Liu, and Junliang Chen. 2022. BATCHS-
KETCH: A “Network-server” Aligned Solution for Efficient Mobile
Edge Network Sketching. In The 28th Annual International Con-
ference on Mobile Computing and Networking (ACM MobiCom °22),
October 17-21, 2022, Sydney, NSW, Australia. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3495243.3558246

1 Introduction

Mobile edge computing (MEC), bringing services close to the
users, is a promising architecture for the next-generation low-
latency mobile communication networks like 6G [7]. How-
ever, closing to users means limited real estate and power
resources, resulting in weaker network and computation
capabilities [4, 8] and making it more vulnerable to mali-
cious behaviors. Thereby, identifying adversary behavior is

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9181-8/22/10.
https://doi.org/10.1145/3495243.3558246

critical to MEC, in which network traffic measurement is
an important yet essential technique to identify potential
malicious behaviors from certain traffic patterns, e.g., top-
flows [10] (i.e., elephant flows), heavy hitters [9] (i.e., flows
generating huge amounts of data in a short period of time),
and spreaders [6] (i.e., hosts initiating a large number of dis-
tinctive connections in a small duration), without disrupting
network services.

However, detecting heavy flows (e.g., top-flows, heavy hit-
ters, and spreaders) in practice is challenging because i) the
traffic volume is gigantic and can continuously increase over
time; and ii) the detection should tolerate the worst-case (e.g.,
when bursts and attacks arrive). For example, detecting on a
fully used modern 100 Gbps link with 64 B! Ethernet packets
indicates a 148 Mpps packet processing throughput. Besides,
the available memory resources on in-network devices (e.g.,
switches) are limited. Hence, simply using a flow table to
record/count packets for each flow results in unbounded
memory usage (proportional to the number of flows) and is
considered infeasible for real-world million-flow detection.

Under such rigid constraints, sketches summarize network
measurement metrics with a summary data structure that
tracks the metric value in a fixed number of Buckets. Take
CM-Sketch [3] as an example. It employs d rows of w buck-
ets, and each row uses a dedicated hash function to record
one element (e.g., a packet) in a bucket that has a counter
initialized as 0. When a packet arrives, its flow identification
fields? are extracted and calculated using hash functions as
the keys. A key is mapped to a bucket in each row, and the
bucket increases its counter by 1. Since multiple flows can
hit the same bucket making the counters may be larger than
the flow’s actual size, CM-sketch uses the minimum count
across all rows as the final estimated measurement result.

State-of-the-art sketches run merely on a programmable
switch [9] or general-purpose commodity server [5, 6, 11],
failing to achieve optimal performance (i.e., throughput) due
to the limited memory on the switch and impaired packet
processing capability on the server, respectively. Our obser-
vation is that both platforms have unreplaceable benefits:

The minimum size of Ethernet packets
2For example, the identification fields of a 5-tuple flow is (srcIP, dstIP,
srcPort,dstPort, proto).

https://doi.org/10.1145/3495243.3558246
https://doi.org/10.1145/3495243.3558246

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

the switch can attain peak packet processing performance,
whereas the server has plenty of memory resources to utilize.
Besides, buffering a fixed number of packets in a batch and
processing (e.g., received, transmitted, updated) them simul-
taneously is a widely used technique for achieving higher
throughputs. Hence, the question is: can we achieve fast yet
precise network measurements that benefit from the ultimate
performance of programmable switch platforms and the large
memory resources of the general-purpose commodity server
along with the batch mechanism?

Motivated by the batching technique and the status-quo of
sketching systems, we present BATCHSKETCH. It leverages the
batching mechanism commonly utilized in packet processing
along with the fast packet processing capabilities introduced
by switches and large memory resources delivered by com-
modity servers. The intelligence behind BATCHSKETCH is that
i) it first pre-counts the flow numbers in each received packet
batch and finds potential heavy flows® from within on a pro-
grammable switch®. ii) It then sends the potential heavy
flows to the attached general-purpose commodity server
capable of using more memory footprints. Moreover, iii) Re-
mote Direct Memory Access (RDMA) is employed when
transmitting packets between the programmable switch and
the server to mitigate processing latencies. Hence, BATCHS-
KETCH is a “network — server” aligned solution, in which
we leverage the benefits of both commodity servers (plenty
of memory resources) and programmable hardware (high-
performance). To summarize, the contribution of this paper
is three-fold as follows.

e We employ a “network — server” aligned solution called
BATCHSKETCH to measure network traffic efficiently.

e We introduce a batch-based pre-filtering technique to re-
duce memory usage and improve performance using pro-
grammable switches.

e Experimental results show that the programmable switch
can pre-filter over 99% of non-heavy flows.

2 BATCHSKETCH Design

2.1 BATCHSKETCH from a Bird’s Eyes View
To simultaneously achieve fast and precise network measure-
ment with bounded memory usage, we present a “network
- server” aligned approach called BATCHSKETCH. It utilizes
a greedy strategy that first employs the high-performance
programmable switch to find “potential” heavy flows in each
received batch of packets, and it then sends the selected pack-
ets to the server to “enjoy” plenty of memory resources for
finer-grained measurements.

As depicted in Figure 1, BATCHSKETCH consists of two
parts. The pre-filter and the sketcher. The pre-filter runs on a

3For example, top flows, heavy hitters, spreaders.
4This procedure can run on a SmartNIC, such that Step iii) is not needed.

Wendi Feng, Chuanchang Liu, and Junliang Chen

A Batch of Packets

()] o
[e s s i 23 at
-) r 12()
N T s

SMOJ P

Packet P1

11 1 5 8

1UN0 150,

Pre-filter

Match
‘action|
—
——

Stateful

object

Colsiph policy:
W buckets 0

Packet P2

[RoGE] [RoCE]

Har -+ [Har
Pre-filtered

packet transmission,

RDMA NIC

-

Programmable Switch Commodity Server

Figure 1: Overview of BATCHSKETCH.

programmable switch, and the sketcher runs on a general-
purpose commodity server. When the programmable switch
receives packets in each batch, the pre-filter identifies dif-
ferent flows and counts their packet number with a match-
action table. The pre-filter uses the exact match strategy and
flushes the match-action table after receiving n batch epochs
(depending on the match-action table size) to avoid collisions.
Then, the heaviest flow (i.e., the maximum count flow) is fil-
tered out as a “potential” heavy flow. The filtered flow is sent
to the commodity server for sketching via the RDMA con-
nection between the switch and server to avoid transmission
overhead introduced by the server operating system [1]. Be-
sides, the pre-filter only sends flow identifiers retrieved from
packet headers and the counter of packet numbers recorded
by the pre-filter to further reduce the transmission over-
head. RDMA connections rely on high-performance RDMA
NICs deployed on each side of the communication entities.
The commodity server is easy to facilitate, but installing an
RDMA NIC on a programmable switch is impossible. To this
end, we generate RoCEv2 packets directly® from the pro-
grammable switch, thanks to its programmability. Therefore,
the “potential” heavy flow packets can be directly DMA’ed
to the sketcher server’s user space memory.

2.2 Data Structure

The data structure used for the pre-filter on the programmable
switch is a match-action table with a fix-sized length len.
len is capable of recording the number of flows of n batch
epochs of packets mentioned above. This match-action table
can match flows and count their packet number precisely.
To avoid consuming too much memory or overflowing the
match-action table, the pre-filter flushes table entries after n
batch epochs. Since the batch size is usually a constant, the
time complexity for this process is O(n). On the server-side,
the sketcher maintains a data structure similar to BurstS-
ketch [11], and each bucket contains a key and a counter that
is slightly different from the classical CM-Sketch [3]. The

SProgrammable switches are very good at modifying packet headers, which
allows us to build RoCEv2 packets directly.

BATcHSKETCH: A “Network-server” Aligned Solution for Efficient Mobile Edge Network SRéshiktpbiCom *22, October 17-21, 2022, Sydney, NSW, Australia

fi sent from the pre-filter

count = count + N, count =0

count = count + N, count > 0A

N packets key = h, (fz) _%
/ count = count — N, count > 0N %

key 4

count key # hq (fl)

Figure 2: Heavy flow detection on the server.

sketcher employs the frequency [11] strategy to deal with
collisions on each row detailed in Section 2.3.

2.3 Detection Example: Heavy Hitter

The pre-filter process is straightforward, and it can be proved
that heavy flows must be in the filtered flows. We omit the
proof due to space limitations. Assume a flow f; is pre-filtered
by the programmable switch and transmitted to the server.
As depicted in Figure 2, the sketcher first passes f;’s iden-
tifier to the hash function of each row and mods the hash
value with o to index the bucket. If the bucket is empty, the
sketcher directly stores the key (hash value) and the counted
packet number from the pre-filter. If not, the sketcher deter-
mines whether the current key in the bucket is the same as
fi’s key. If yes, the counter increments by N and decreases
by N if otherwise. When retrieving the estimated value of
flow f;, the maximum count across rows is selected. Then if
the estimated count exceeds a predefined threshold value T,
flow f; is considered a heavy flow. This process can report
heavy flow with a probability of 1 — e~¢ with proof, where
e is the Euler number, and d is the number of rows of the
sketcher.

3 Primary Experimental Results

This section shows our primary experimental results of the
number of flows filtered by the pre-filter. We use a clip of the
CAIDA anonymized Internet traces dataset [2] to conduct
the experiments. As illustrated in Figure 3, the pre-filtering
process can significantly reduce the number of flows sent to
the server for further measurement (as low as 0.93% of all
flows), which decreases the input scale of the sketcher. The
two figures show same experimental results but in different
metrics. In the left figure, the number of flows filtered by
the pre-filter (i.e., sent to the server for sketching) is signifi-
cantly reduced as the batch size increases. Similarly, when n
(detailed in Section 2) increases, the number of filtered flows
also reduces in the right figure. Our experimental results
demonstrate that the pre-filter is efficient, and we believe the
sketcher can minimize the memory usage on the commodity
server that benefits from the pre-filtering.

4 Conclusion and Future Work

We present BATCHSKETCH, a “network — server” aligned so-
lution for mobile edge network measurement. It employs a
two-stage mechanism that first leverages a greedy strategy
to pre-filter potential heavy flows from each received packet

10* -

= 106 - 0\—:—0—0—0—0
n E e
N A - B s M " 1% aaien M)
\ 4 T
., .\ 3 {-e11
Ry e R (i e = 3 * & A
R | A [Eal M S 1
N] 16 —— T
‘ i —o H 4 - 32 ’ >~~~>,,,,<
35— i 64 *— o o
= —a— Al S
T T T T HI 105 T T T T T T
8 16 32 64 12 3 4 5 6
Batch Size n

Figure 3: Number of filtered flows as the increase of
batch size and the number of epochs n.

batch directly at the programmable switch. It then trans-
mits the filtered packets to the commodity server, which
allows sketches to “enjoy” plenty of memory resources for
finer-grained measurement. To reduce data transmission
overheads between the switch and the server, an RDMA
link is created by directly generating RoCEv2 packets from
the programmable switch. Our primary experimental results
show that the pre-filter can filter over 99% of non-heavy
flows, remarkably reducing the memory usage on the server.

This work is currently in an early stage. Our next step is to
systematically evaluate memory reduction achieved by the
pre-filter and accuracy affected by the batch size and number
of epochs. We will conduct rigorous theoretical analyses for
the pre-filter, sketcher, and overall result with proven tighter
bounds. We present BATCHSKETCH to call for broad com-
ments and to inspire the network measurement community
to solve the problem from a systematic approach.

Acknowledgments
This work is supported by BISTU Research Fund Under
Grant 2022X]JJ19. We thank the anonymous reviewers for
their valuable comments.

References
[1] Qizhe Cai, et al. 2021. Understanding host network stack overheads.
In SIGCOMM. 65-77.
[2] CAIDA. 2022. The CAIDA UCSD Anonymized Internet Traces. https:
//www.caida.org/catalog/datasets/passive_dataset
[3] Graham Cormode et al. 2005. An improved data stream summary: the
count-min sketch and its applications. JALGO 55, 1 (2005), 58-75.
[4] Wendi Feng, et al. 2022. STATOEUVER: State-aware Load Balancing
for Network Function Virtualization. In INFOCOM WKSHPS. 1-2.
[5] Lu Tang, et al. 2019. Mv-sketch: A fast and compact invertible sketch
for heavy flow detection in network data streams. In INFOCOM.
[6] Lu Tang, et al. 2020. Spreadsketch: Toward invertible and network-
wide detection of superspreaders. In INFOCOM. 1608-1617.
[7] Harsh Tataria, et al. 2021. 6G wireless systems: Vision, requirements,
challenges, insights, and opportunities. Proc. of the IEEE 109, 7 (2021).
[8] Ziyan Wu, et al. 2022. NFlow and MVT Abstractions for NFV Scaling.
In INFOCOM. 180-189.
[9] Tong Yang, et al. 2018. Elastic sketch: Adaptive and fast network-wide
measurements. In SIGCOMM. 561-575.
[10] Tong Yang, et al. 2019. HeavyKeeper: An Accurate Algorithm for
Finding Top-k Elephant Flows. TON 27, 5 (2019), 1845-1858.
[11] Zheng Zhong, et al. 2021. Burstsketch: Finding bursts in data streams.
In SIGMOD. 2375-2383.

https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset

	Abstract
	1 Introduction
	2 BatchSketch Design
	2.1 BatchSketch from a Bird's Eyes View
	2.2 Data Structure
	2.3 Detection Example: Heavy Hitter

	3 Primary Experimental Results
	4 Conclusion and Future Work
	Acknowledgments
	References

