
2056 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

An End-Host-Importance-Aware Secure
Service-Enabled Hybrid SDN Deployment

Wendi Feng , Member, IEEE, Chuanchang Liu, Bo Cheng , Member, IEEE,
Junliang Chen, and Zhiguo Wan , Member, IEEE

Abstract—Security is critical to networks, but TCP/IP-based
legacy networks are difficult to advance new security functions
due to the use of costly inflexible hardware devices and error-
prone network configurations. Recent literature explores the
paradigm of consolidating security services with the forwarding
functionality using Software-defined Networking (SDN). Existing
full SDN deployment, replacing all legacy network devices with
SDN devices, is cost-prohibitive. Whereas the hybrid SDN that
only upgrades partial legacy devices to SDN switches is con-
sidered practical. However, the challenge is to minimize threats
and deployment expenses simultaneously under heterogeneous
end-host businesses that have various importance. In this paper,
we study the challenge and propose the End-host-importance-
Aware secure service-enabled hybrid Sdn deplOymeNt (EASON)
problem. We mathematically formulate the EASON problem as
an integer programming problem, prove its non-polynomial time
complexity, and propose a heuristic algorithm called Algorithm.
We conduct rigorous simulations on real-world topologies and
traces. Experimental results show that Algorithm achieves com-
parable security and cost performances to the optimal solution
on small topologies. Meanwhile, it is scalable on larger topologies.

Index Terms—Hybrid SDN, network security, network deploy-
ment, end-host importance aware.

I. INTRODUCTION

NETWORK security is of paramount importance and has
become a top consideration for network operators [1].

In traditional TCP/IP legacy networks, new dedicated secu-
rity devices (e.g., DDoS defenders) are required to enable
security services, and complex forwarding rules are necessary
to be applied for “detouring” traffic to the security devices.
The whole process is costly, tedious, and error-prone. Recent
Zero Trust security [2] advocations, distrusting any entities

Manuscript received 3 July 2022; revised 18 September 2022; accepted
19 September 2022. Date of publication 22 September 2022; date of current
version 6 July 2023. This work is supported in part by the National Natural
Science Foundation of China under grant U21A20468, 61972043, 61921003,
Zhejiang Lab under grant 2021PD0AB02, the Fundamental Research
Funds for the Central Universities under grant 2020XD-A07-1, Beijing
Natural Science Foundation under grant 4214061, and BISTU fund under
grant 2022XJJ19. The associate editor coordinating the review of this arti-
cle and approving it for publication was F. Valenza. (Corresponding authors:
Wendi Feng; Chuanchang Liu.)

Wendi Feng is with the School of Computer Science, Beijing
Information Science and Technology University, Beijing 100192, China
(e-mail: wendi.feng@hotmail.com).

Chuanchang Liu, Bo Cheng, and Junliang Chen are with the Beijing
University of Posts and Telecommunications, Beijing 100876, China (e-mail:
lcc3265@bupt.edu.cn).

Zhiguo Wan is with Zhejiang Lab, Hangzhou 311122, China.
Digital Object Identifier 10.1109/TNSM.2022.3208695

in the network, further raise the bar for network operations
in legacy networks. Owing to the complexity, network ven-
dors present new generations of TCP/IP-based network devices
with security services consolidated [3], [4]. However, lever-
aging these benefits must replace all old devices, incurring
unacceptable costs. Furthermore, security services rely on the
provision of hardware vendors, which faces the inability of
customization [5] and rapid adaptations of new businesses.

Thanks to Software-Defined Networking (SDN) [6], consol-
idating security services to the existing infrastructure becomes
possible [7], [8]. SDN allows network (functions) provi-
sioned openly as software rather than in a vendors-specific
hardware “boxes” by decoupling network devices’ control
and data planes [6]. This concept is later shifted to the
decoupling of software and hardware platforms [5] that
influences the middlebox community advanced by network
function virtualization (NFV) to decouple software (i.e., the
control plane) from hardware middleboxes (i.e., the data
plane). The recent prevalence of programmable data planes
brings even more flexibilities, providing the capability of
running network functions (NFs) on programmable SDN
switches [9], [10], [11], [12], [13], [14]. Hence, SDN is the
“fertilized soil” for security services.

However, employing SDN brings new challenges in prac-
tice. Most networks are still legacy TCP/IP-based networks,
but SDNs, by default, are incompatible with legacy networks.
Hence, traditional SDN deployments need to replace all legacy
network devices with SDN devices, which results in unac-
ceptable costs. Moreover, the all-new full SDN deployment is
onerous because all configurations should be re-implemented
from the ground up due to the distinctive architecture. To
this end, practical SDN deployments follow an incremental
approach [15], [16], [17], [18], [19], [20], [21], in which par-
tial legacy network devices are replaced with SDN devices,
and the remaining legacy devices may needless to make
modifications [20], [21].

Consequently, we leverage the idea of hybrid SDN and pro-
pose Hybrid SDN as Security Services (HSaSS) to practically
advance security on networks. In HSaSS, security services are
directly built on programmable SDN switches [12], [13], and
new end-to-end flows are “attracted” to the SDN devices for
security inspection and forwarding.1 When malicious traffic

1Specific techniques of implementing the hybrid SDN and security network
functions on the SDN controller or the programmable data plane are out of
the scope of this paper.

1932-4537 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2540-8120
https://orcid.org/0000-0003-2160-2839
https://orcid.org/0000-0003-1319-1224

FENG et al.: END-HOST-IMPORTANCE-AWARE SECURE SERVICE-ENABLED HYBRID SDN DEPLOYMENT 2057

comes, the traversed non-SDN network devices and their
attached end-hosts suffer unless the traffic is intercepted by
a security service-enabled programmable SDN device.

The challenge is to deploy SDN switches and achieve
a secure yet cost-effective hybrid SDN network. We argue
that using a single SDN switch may fail to guarantee each
end-to-end flow passing an SDN switch and thus lose flow
programmability (e.g., the ability to dynamically adjust paths).
However, the full SDN deployment is cost-prohibitive, while
arbitrarily deploying multiple SDN switches in the hybrid
SDN network may be insufficient or beyond necessary due
to the divergent importance of nodes and attached end-hosts
of different networks. Therefore, the hybrid SDN needs a wise
deployment decision.

In this paper, we take a step further from our previous
work, CLÉ [22]. We explore the optimal hybrid deployment
scheme that is i) end-host-importance-aware: Important busi-
nesses should be preferentially protected. ii) Secure: Malicious
traffic should be intercepted as early as possible to diminish the
impact. iii) Cost-effective: A minimal number of SDN switches
are used in the hybrid SDN to reduce deployment expenses.
We name it the End-host-importance-Aware secure service-
enabled hybrid Sdn deplOymeNt (EASON) problem. It aims
at using a minimum number of SDN switches to intercept
malicious traffic expeditiously. We mathematically formu-
late the EASON problem as an optimization problem and
prove the non-deterministic polynomial-time hardness (NP-
hardness) complexity. This complexity originates from node
significances determined by the SDN deployment and path
selections. Due to the complexity, we present an efficient
heuristic algorithm called Algorithm to solve the EASON
problem. Algorithm employs an iterative approach that selects
the most common anterior nodes in each flow’s shortest path
to deploy the programmable SDN switches.

The contribution of this paper is three-fold.
• We present the EASON problem in the hybrid SDN

deployment and formulate it as an optimization problem.
• We prove the NP-hardness of the EASON problem.

Hence, we propose an efficient heuristic algorithm called
Algorithm to solve the problem.

• We conduct rigorous simulations on multiple real-world
topologies, including Abilene and GÈANT with real-
world traffic traces. Experimental results demonstrate the
effectiveness of Algorithm.

The remainder of the paper is organized as follows.
Section II introduces background knowledge and state-of-the-
art. Section III presents our considered attack models and
motivates the EASON problem with examples. We math-
ematically formulate the problem in Section IV. We then
prove its NP-hardness and propose the Algorithm algorithm
in Section V. In Section VI, we present the simulation setup
and results, and Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first briefly introduce concepts of SDN,
Hybrid SDN, and programmable switches. We then present
related work. To the best of our knowledge, this paper is the

Fig. 1. Software-Defined Network and legacy network.

first to study the security-service-enabled programmable SDN
switch deployment with the awareness of end-host importance
in the hybrid SDN.

A. Background

1) Software-Defined Network: SDN [6] softwarizes the
network and brings openness and flexibility to network man-
agement. Hence, customized network functions2 can be easily
realized in SDN. These are achieved by decoupling the con-
trol plane from forwarding devices and reserving the data
plane on the devices. Traditional network devices tie the con-
trol and data planes closely together inside the forwarding
device with dedicated software, which is hard to adapt to
customized services. As shown in Fig. 1, SDN employs a (log-
ically) central controller to retrieve the “global view” of the
network instructing the data plane (controlled devices) for-
warding packets. Communications between the controller and
SDN switches can be either in-band or out-of-band using SDN
protocols (e.g., OpenFlow [23]), where the former transmits
the control messages by sharing the links with the data plane,
and the latter uses dedicated “controller – switch” links.

Unlike legacy networks that often employ proprietary mid-
dlebox devices3 to perform (security) network functions (NFs),
deploying network functions on SDNs can be done by
installing SDN applications on the SDN control plane [25],
[26], [27], thanks to the flexibility and openness. Hence, secu-
rity services, e.g., firewalls, intrusion detection systems (IDS),
and intrusion protection systems (IPS), can be deployed on
the SDN without introducing new devices to the network but
greatly simplify network management and lower deployment
costs.

2) Hybrid SDN: Deploying SDN in practice follows an
incremental deployment strategy due to technical, financial,
and business challenges [28], [29], [30], [31], [32]. During the
incremental SDN deployment, both legacy and SDN switches
present and cooperate to achieve programmability and network
management-ability, making the network a hybrid SDN. A
plethora of recent work on hybrid SDN has been proposed,
including hybrid SDN deployment [16], [17], [18], [19], new

2Including forwarding and routing.
3Although recent routers [3], [4] have added support for integrated

NFs, production networks still leverage dedicated middleboxes to conduct
functionalities [24].

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

2058 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 2. Hybrid SDN demonstration.

architectures for hybrid SDNs [33], [34], [35], [36], hybrid
SDN management studies [17], [37], and traffic engineering
aided by hybrid SDN [38], [39], [40]. Although many security-
related arts have been put forth (detailed in Section II-B), they
neglect that hybrid SDN can enhance network security with
security services deployed on programmable switches.

Our previous work [22] draws the blueprint for utilizing
programmable switches to deploy security services. Its foun-
dation is to attract flows to the SDN switches for security
analysis. The idea of attracting flows to the SDN switches is
borrowed from recent work [20], [21] that employs a “plug-
and-play” approach, in which the SDN switches and controller
can “cooperate” with the unmodified legacy devices by using
the address resolution protocol (ARP). More specifically, the
SDN controller generates gratuitous ARP messages and lever-
ages the controlled SDN switches to inject the messages to
the network and populate ARP cache tables on end-hosts
with “fictitious” or “illusory” media access control (MAC)
addresses. Hence, the legacy devices can update their forward-
ing table accordingly and send packets to the SDN switches for
programmability. Then, the SDN switches can forward pack-
ets to the proper destination. As shown in Fig. 2, flows are
“attracted” to the SDN-capable devices without modifying the
legacy devices like the magnetic force. This architecture is
also resilient to failures. For example, if one SDN switch fails,
legacy network devices will update the forwarding table with
the newly received gratuitous ARP messages from “live” SDN
devices to bypass the failed device, and if some flows fail to
pass an SDN switch, these flows will be forwarded directly
by legacy devices. Besides, when all SDN devices fail, the
network falls back to the legacy network. The specific mecha-
nism is out of the scope of this paper, and please refer to [20],
[21] for more details.

B. Related Work

Our work is built on the foundation of the hybrid SDN
and programmable data plane, where security NFs can be
implemented on the programmable SDN switch. Hence, in this
subsection, we brief necessary related work for running NFs
on the programmable switches, security device placement, and
network planning.

1) From NFV to Programmable Switches: The trend of
using general-purpose commodity computing platforms to
implement NFs, called Network Function Virtualization
(NFV), raises attention from both academic and industrial
communities [41]. Research has been carried out on improving

manageability [42], [43] and performance [44], [45]. However,
this pure software approach often suffers from impaired per-
formances (e.g., can only achieve as high as several hundred
gigabits per second), and a significant amount of computa-
tion resources is “eaten” due to the lack of dedicated packet
processors [46]. Notwithstanding simple NFs can be directly
applied to SDN switches, complex ones may involve deep
participation of the SDN controller, which can again incur
significant “controller – switch” overheads [47]. Thanks to
programmable switches [48], implementing high-performance
complex functions directly on the data plane becomes possible.
The presence of the P4 language [49] further greatly simplifies
programming switches. With these advances, new paradigms
are exploding. For example, stateful network functions [8], in-
network key-value stores [50], load-balancing [51], [52], paral-
lel computing devices [24], [53], [54], cooperating with hosts
via remote direct memory access (RDMA) [55], in-network
telemetry [56], [57], and canary testing [58], [59]. These inno-
vations bring unimaginable potential to the next-generation
network and security functions.

2) Security Services on Programmable Networks: A pro-
fusion of recent studies has been proposed to implement
security functions on programmable switches. Vörös and
Kiss [11] present a firewall implementation with protocol,
port filtering, and flood detections using P4. P4ID [12] and
P4DDPI [60] deploy the IDS on programmable switches, and
P4ID can achieve up to 75% of the performance reduction
compared with traditional host-based IDS. ElasticSketch [13],
SpreadSketch [61], HashPipe [62], and pHeavy [63] profile
the traffic and find bursts (i.e., gigantic traffic in a short
duration) or spreader (i.e., hosts initiate a large number of
connections) from the traffic to identify malicious behaviors.
Although these researches are efficient, they focus on a single
programmable switch security service implementation without
considering the impact of network-wide deployments.

3) Security Middlebox Placement: Our work studies plac-
ing security services (functions) on different programmable
SDN switches. Hence, we survey related security middlebox
placement work. ShieldBox [64] considers creating secu-
rity services on untrusted commodity server platforms with
hardware enclaves. Smith and Bhattacharya [65] present the
concept of firewall cascade that aims at maximizing security
protection with optimized cost, which leverages a chain of
firewalls and places them between the potential attack point
and network node that has sensitive data to reduce the pro-
tection inability with one firewall. Lee et al. [66] propose
a firewall deployment scheme in the data center network,
which is subject to the bandwidth consumption of links.
Bouet et al. [67] deploy vDPI (virtual Deep Packet Inspection)
network functions on a dedicated programmable switch in full
SDNs.

However, all these studies fail to consider that attacks (e.g.,
DoS attacks) can impact the network nodes along the propa-
gation path resulting in the compromise of the network.

4) Network Security Planning: A plethora of network plan-
ning work has been proposed. Hence, we only survey the
most relevant ones. NETSPA [68] is a tool to display pos-
sible attack sequences of attackers. It generates worst-case

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: END-HOST-IMPORTANCE-AWARE SECURE SERVICE-ENABLED HYBRID SDN DEPLOYMENT 2059

attack graphs using a forward-chaining depth-first search of
attack space. Lv et al. [69] address physical-layer attacks of
the SDN-based optical network control plane. Its goal is to
minimize the network service disruption under physical-layer
attacks, which can increase the resiliency of the SDN network,
similar to our previous work [70], by remapping attacked
controller controlled switches to live controllers. However,
these researches differ from ours for the following reasons.
i) Different system settings: Our work employs the concept
of security service-enabled programmable SDN switches in
the hybrid SDN scenario. ii) Different attack models: Our
attack model assumes attacks can be mitigated by the pro-
grammable SDN switch (detailed in Section III), whereas
existing work profiles the attack propagation in a local area
network or increases network resiliency by rearranging the
“switch – controller” mapping.

III. ATTACK MODEL AND MOTIVATION

In this section, we first present our considered attack
model. Based on the attack model, we employ a set of
simple examples to show the security issues and how the
proposed End-host-importance-Aware secure service-enabled
hybrid Sdn deplOymeNt can intelligently solve them.

A. Attack Model

The attack model is based on the observation that attackers
can conduct attacks by generating malicious traffic and inject-
ing them into the network. When malicious traffic propagates,
the hosts connecting to each traversed node will be highly vul-
nerable if no security services are deployed on the node. Many
attacks in the real world have these characteristics. We demon-
strate a Denial-of-Service (DoS) attack example later in the
subsection. In our setting, when the malicious traffic traverse
through a programmable SDN switch, the traffic is terminated
because security services are deployed on the programmable
SDN switch. Hence, all flows should pass at least one pro-
grammable SDN switch to analyze the traffic and guarantee
the flow programmability.

In practice, each node may connect to distinct types of hosts
that provide various services. For example, one node is more
important than another when it connects to many servers that
serve millions of users while the other node only has per-
sonal devices connected. Consequently, our attack model also
accounts for the diversity of network node importance. In this
paper, we only consider peer-to-peer flows between two nodes,
which is the aggregation of all end-to-end flows over the two
nodes. We use “flow” to represent peer-to-peer flows unless
pointed out.

Example: DoS Attack: DoS [71] attacks send an enormous
amount of traffic to compromise the target. It makes hosts less
responsive, exhausts resources, and disables services. SYN-
flooding [72] is the easiest way to conduct DoS, in which
the attacker sends a massive amount of TCP SYN packets
to request connection establishments with a host but neglects
all subsequent SYN-ACK packets. The target end-host and the
nodes along the path will consume enormous computation and
memory resources to repeatedly re-generate and re-transmit

the SYN-ACK packet for all SYN packets. Simultaneously, a
significant amount of traffic “jams” the network, congests the
links, and influences the communications of other hosts.

B. Motivation

This subsection motivates the EASON problem with exam-
ples. We first show that a legacy network with six nodes,
and each node connects to many end-hosts. Due to the lack
of security enhancements, end-hosts can be compromised as
attacks come. Later, we show that introducing security-service-
enabled programmable SDN switches to the network for traffic
analysis and malicious traffic interception. The challenge is
that using only one such device may fail to retain the pro-
grammability for all flows, but deploying all network nodes
using security-service-enabled programmable SDN switches
and converting the legacy network into a fully security-service-
enabled SDN is cost-prohibitive. Besides, arbitrarily deploying
multiple SDN switches can also fail to ensure security protec-
tion and flow programmability. Hence, we need to judiciously
select the nodes to deploy the programmable SDN switches.4

1) Insecure Legacy Network and Blessing of Programmable
SDN Switches: Fig. 3a depicts a legacy network with six
nodes, and each node connects to many end-hosts.5 The
network does not deploy any dedicated security network func-
tions. Thus, as shown in Fig. 3b, when malicious traffic (red
bold line) is injected into the network, all nodes and end-hosts
along the way are influenced (red border).

Owing to the openness and flexibility of SDN, deploying
security services on the SDN (see Section II) is straight-
forward. After deploying security network functions on pro-
grammable SDN switches, the data plane can conduct security
analyses for the packets (e.g., DPI, IDS) and mitigate mali-
cious traffic. As shown in Fig. 3c, the network becomes a
hybrid SDN after introducing the security-service-enabled pro-
grammable SDN switch. Flows are sent to the programmable
SDN switch for packet forwarding (or relaying) and security
analysis, and the security is thus enhanced.

2) Curses of Upgrading a Single Node and Full SDN:
Notwithstanding the benefits, using a single programmable
SDN switch to process all flows in the network can overload
the switch and can thus result in poor network conditions.
This will further impact end-hosts and make the network
fail to satisfy the Service Level Objective (SLO). Moreover,
when a bridge6 of a network does not have a programmable
SDN switch, the programmability of flows between the bridge
nodes can fail to be satisfied. Therefore, more security-service-
enabled SDN switches are required.

However, it is unnecessary to completely replace all legacy
devices with programmable SDN switches (see Fig. 3d).
Although a full programmable SDN device replacement

4We use “programmable SDN switches” and “SDN switches” interchange-
ably in this paper.

5We use the total rate on this node to represent its significance (detailed
in Section IV-B1). For expressiveness, we employ colors to indicate the impor-
tance of the node. The darker the color is, and the more important the node
is.

6For example, the link between node 4 and the node 3 in Fig. 3a is a
(mathematical) bridge. If SDN switches are not deployed at either of these
nodes, flows between them are not programmable.

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

2060 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 3. Motivation examples. The number by each node is its ID number, and the figures only show partial flow cases.

can protect the network and forward packets at the best
performance, the cost of replacing all legacy devices can be
prohibitive. Moreover, the process of re-configure the all-new
devices can be tedious and error-prone. Businesses may thus
be impacted. Hence, the full SDN deployment is not readily
available for production environments.

3) Arbitrarily Upgrading Multiple Nodes: Arbitrarily
selecting some nodes and upgrading them to a security-
service-enabled programmable SDN device may not be
enough. If the chosen nodes are “improper”, 1) programmable
SDN switches can be overloaded and 2) traffic can be routed
over a long detoured path to pass a programmable SDN
switch, which results in malicious traffic being propagated
“throughout” the network, impacting (compromises) the
network end-hosts (see Fig. 3e).

4) Secure Yet Cost-Effective Deployment With End-Host
Importance Awareness: When judiciously selecting “proper”
nodes in the network topology, as shown in Fig. 3f, the
network can mitigate malicious traffic as early as possible
and reduce the number of impacted (compromised) end-hosts.
Besides, the number of SDN switches used is minimal

without overloading the network. We call it the End-host-
importance-Aware secure service-enabled hybrid Sdn deplOy-
meNt (EASON). When a path is selected, traffic can only
pass through that path. Other unused links can provide
resiliency, as we have mentioned in Section II-A2. The rest
of the paper systematically explores the method of finding the
deployment.

IV. FORMULATION

In this section, we formally formulate the EASON problem.
We first mathematically describe the network structure and
then present path-traversal-based network security metrics.
Next, we introduce constraints and the objective function, and
finally formulate EASON as an integer programming problem.

A. System Description

This subsection mathematically formulates the network. For
quick referencing, all used notations are shown in Table I. A
network contains network devices (nodes) and links, which can
be represented as a graph G = (V ,E), where V = {v1, v2, . . .}

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: END-HOST-IMPORTANCE-AWARE SECURE SERVICE-ENABLED HYBRID SDN DEPLOYMENT 2061

TABLE I
NOTATION DESCRIPTIONS

is the set of nodes, and E = {e1, e2, . . .} is the set of links.
Each node can be (deployed with) either an SDN switch or a
legacy network device (i.e., a legacy switch or router). Node
vi represents the i th node. Let P = {−→p1,−→p2, . . .} be the set
of paths, and let F = {f1, f2, . . .} be the set of flows. Each
flow fj has many path candidates and is represented by Y =
{yjm}, where yjm = 1 denotes flow fj uses path −→pm , and
otherwise yjm = 0. Let A = {aki} be the relationship matrix
of links {ek} and nodes {vi}. aki = 1 if node vi in link
ek , and 0 otherwise. The load of each flow fj is written as
load(fj). Let X = {xi} indicate whether node vi is an SDN
switch, where xi = 1 represents that node vi is deployed with
an SDN device, and otherwise xi = 0. Let H = {him ∈
{0, 1}} be the relationship matrix of nodes and paths. Let
C node = {cnode1 , cnode2 , . . .} be the set of switch processing
capabilities, where cnodei denotes the processing capability of
node vi . Let C link = {clink1 , clink2 , . . .} be the link capacity
set, where clinkk denotes the capacity of link ek .

B. Metrics

In this subsection, we present three path-traversal-based
metrics. The node significance metric indicates the signifi-
cance of the node determined by its connected services. The
propagated path metric describes all nodes passed by a flow
from its entry node (from which a flow enters the network)
to the first node deployed with the security-service-enabled
programmable SDN device. Lastly, to evaluate the overall
security performance, we present the compromised network

Fig. 4. The Node significance example. Calculated from real-world
traces [73] of the Abilene [74] topology.

significance metric that accumulates the node significances of
compromised network nodes across all flows.

1) Node Significance: We define the significance of a node
as the total rates (traffic transmission rate) passing the node. A
node (i.e., a router or switch) usually connects many devices,
and different types of devices have distinct usages of various
importance. For example, a personal device only matters its
owner, while a server that runs tens or hundreds of services
(e.g., social networking and financing services) and serves a
large group of people matters a massive amount of users.
When the node only connects to personal devices, the overall
traffic rates passing through the node are usually small, but
when it connects to servers running many services, traffic can
be gigantic. Hence, the metric can be formally written as

si =
∑

fj∈F
load

(
fj
)
oij , (1)

where oij = 1 represents node vi in flow fj ’s selected path,
and 0 otherwise. Hence, matrix O = {oij } is calculated as

O = HY ᵀ. (2)

Therefore, Equation (1) can be reformulated as

si =
∑

fj∈F
load

(
fj
) |P |∑

m=1

himyjm . (3)

2) Propagated Path: The goal is to intercept malicious traf-
fic as early as possible. Hence, we need to describe the status
of a flow that has propagated on the network. We represent
it with a sequence of nodes from the entry node to the first
security service node (i.e., the programmable SDN switch) on
the flow path. It can be formally represented as

−→pj ′ =
⎧
⎨

⎩v | v ∈
∨

−→pm∈P

−→pm ∧ y ′mj , until first xv = 1

⎫
⎬

⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
v | v ∈

⋃

vi∈
∨

−→pm∈P

−→pm∧y ′
mj

vi

⎛

⎝¬
i∨

i1=1

xi1

⎞

⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (4)

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

2062 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 5. A propagated path example on Abilene. Malicious traffic is terminated
at the security-service-enabled programmable SDN switch. Colors indicate the
node significances shown in Fig. 4.

where y ′mj is derived from ymj , and y ′mj = ∅ if ymj = 0,

and otherwise y ′mj = −→pm . Expression ¬∨i
i1=1 xi1 indicates

whether an SDN switch has been passed at the i th node along
the path. As long as vi is an SDN switch, all succeeding nodes
cannot change the value of

∨i
i1=1 xi1 that will always be 1. As

shown in Fig. 5, the selected path for flow 9→ 8 is “9→ 4→
1 → 11 → 8”. Since node 1 is a programmable SDN switch
and has security service, malicious traffic will be dropped by
node 1. Thus, the propagated path is “9→ 4”.

3) Compromised Network Significance: With the above
metrics, we now consider the impact of malicious traffic over
the whole network and propose the compromised network sig-
nificance metric under security-service-enabled programmable
SDN switches deployment scheme X. We model the compro-
mised network significance as the summation of all compro-
mised node significances across all flows. It can be written as

r =
∑

fj∈F

∑

vi∈−→pj ′
si

=
∑

fj∈F

∑

vi∈
∨

−→pm∈P

−→pm∧y ′
mj

si

⎛

⎝¬
i∨

i1=1

xi1

⎞

⎠. (5)

C. Constraints

1) Hybrid SDN Constraint: The total number of SDN
devices needed should be less than the total number of nodes
in the network. Besides, the network should at least replace
one legacy device with a programmable SDN device to lever-
age programmability and enhance security. We mathematically
formulate this constraint as

1 ≤
∑

vi∈V
xi < |V |, xi ∈ {0, 1}. (6)

2) Path Programmable Constraint: Each flow should pass
at least one programmable device (i.e., a programmable SDN
switch) to leverage the programmability and utilize security
services. Hence, for each flow fj ∈ F , we have

∑

vi∈V

⎛

⎝xi
∑

−→pm∈P
himyjm

⎞

⎠ ≥ 1. (7)

3) Programmable Device Capability Constraint: As the
network starts running, the programmable SDN switch starts
processing traffic and intercepts malicious traffic. However,
devices have limited processing capabilities, and the traf-
fic processing demand should not exceed their capability.
Therefore, for each node vi ∈ V , this is formulated as

∑

fj∈F

⎛

⎝load
(
fj
) ∑

−→pm∈P
himyjm

⎞

⎠ ≤ cnodei . (8)

4) Link Capacity Constraint: Similarly, each link has a
capacity limit, and total traffic rates that pass through a link
cannot exceed the link’s capacity.

For brevity, we first formulate the relationship between links
and flows as

B = A(HY ᵀ), (9)

where H is the node – path relationship matrix. The value
of each bkj ∈ B represents the number of nodes of a link
on the path (e.g., the number of nodes of link 〈u, v〉 on path
“· · · → u → v · · · ” is 2). Therefore, the value of each bkj
can be “0, 1, 2”. bkj = 2 iff. link k is in flow fj . Hence, each
element in the “link – flow” relationship matrix B ′ = {b′kj }
can be formulated as

b′kj = max
{
0, bkj − 1

}
. (10)

Therefore, for each link ek ∈ E , the link capacity constraint
is formulated as

∑

fj∈F
load

(
fj
)
b′kj ≤ clinkk . (11)

D. Objective Function

Merely considering security using the network compro-
mise ratio metric may result in a prohibitive deployment cost.
Hence, we consider two objectives in the EASON problem: the
compromise ratio and number of SDN switches used. The first
objective is the key to enhance security by intercepting mali-
cious traffic, while the latter reduces expenses for the hybrid
SDN deployment.

The first objective is represented as

obj1 = r

=
∑

fj∈F

∑

vi∈
∨

−→pm∈P

−→pm∧y ′
mj

si

⎛

⎝¬
i∨

i1=1

xi1

⎞

⎠, (12)

and the second objective is written as

obj2 =
∑

i

xi . (13)

The objective function is a weighted summation of obj1 and
obj2 as

obj = λobj1 + obj2

= λ
∑

fj∈F

∑

vi∈
∨

−→pm∈P

−→pm∧y′mj

si

⎛

⎝¬
i∨

i1=1

xi1

⎞

⎠+
∑

vi∈V

xi . (14)

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: END-HOST-IMPORTANCE-AWARE SECURE SERVICE-ENABLED HYBRID SDN DEPLOYMENT 2063

where λ (0 ≤ λ ≤ 1) is a constant to indicate the relationship
between the two objectives. It is a fixed value in our setting
and normalized in the simulation based on topology sizes.

E. Problem Formulation

As mentioned in previous subsections, the goal of the
EASON problem is to minimize the compromised network
significance r by using the minimal number of SDN switches∑

vi∈V xi . The problem is formulated as

min
x ,y

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
λ
∑

fj∈F

∑

vi∈
∨

−→pm∈P

−→pm∧y ′
mj

si

⎛

⎝¬
i∨

i1=1

xi1

⎞

⎠+
∑

vi∈V
xi

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

s.t. (6), (7), (8), (11),

xi ∈ {0, 1}, yjm ∈ {0, 1},
∀i ∈ [1, |V |], ∀j ∈ [1, |F |], ∀m ∈ [1, |P |],
v ∈ V , s ∈ S , (P)

where {si} are calculated constants. The designed variables
{xi} and {yij } are binary integers. Hence, the formulated
Problem (P) is an Integer Programming problem.

V. SOLUTION

In this section, we analyze the complexity of the EASON
problem and prove its NP-hardness. Due to its complexity, we
present an efficient heuristic algorithm called Algorithm.

A. Complexity Analysis

In this subsection, we prove the NP-hardness of the
EASON problem by reducing a special case to the Set Cover
Problem (SCP) [75].

Theorem 1: For a special case when the relationship vari-
able λ = 0, the End-host-importance-Aware secure service-
enabled hybrid Sdn deplOymeNt problem is NP-hard.

Proof: We first introduce the SCP problem. The SCP
problem describes that given a set E = {e1, e2, . . . , em} and
its non-empty power set P(E)\∅ = {E1,E2, . . . ,En}. Each
subset Ej has a weight cj , where j ∈ [1,n]. A set cover is a
collection T ⊆ {1, . . . ,n} such that ∪j∈TEj = E . The dif-
ference between T and P(E) is that T is a collection of subset
indices from P(E), whereas P(E) contains all subsets of E.
Let xj = 1 represents the subset Ej is selected, and xj = 0
otherwise. Let yij = 1 denotes ei ∈ Ej , and 0 otherwise. The
SCP problem finds a minimum weight set cover, which is

min
T

⎧
⎨

⎩
∑

j∈[1,n]
cj xj

⎫
⎬

⎭, (15)

s.t.
⋃

j∈T
Ej = E , (16)

1 ≤
∑

j∈[1,n]
xj ≤ n, (17)

∑

j

yij = 1. (18)

It has been proved that the SCP problem is NP-hard [75].
We then prove for the aforementioned special case,

Problem (P) and the SCP problem are equivalent. Given
the special case in Theorem 1, obj1 can be eliminated. The
Objective function of Problem (P) can be reformulated as

obj =
∑

i

xi . (19)

Besides, the obj1 related Constraints (7), (8), (11) are elimi-
nated.

Hence, Problem (P) can be reformulated as

min
x

∑

i

xi ,

s.t. 1 ≤
∑

vi∈V
xi ≤ |V |,

∑

−→pm∈P
yjm = 1. (P’)

Problem (P’) aims to minimize the number of SDN switches.
We can regard node vi and flow fj in Problem (P’) as element
ei and subset Ej . Under such a construction, we can prove that
there exists an optimal solution using the minimum number
of programmable SDN switches to serve the network, iff. the
SCP problem has an optimal solution that has the minimum
number of subsets to cover set E. This problem construction
can be achieved in a polynomial time, but finding the optimal
solution to Problem (P’) is NP-hard due to the NP-hardness
of the SCP problem.

Hence, Problem (P’) is a special case of the SCP problem.
Consequently, we can conclude that

Theorem 2: The EASON problem is NP-hard.

B. The Algorithm Algorithm

The complexity of the EASON problem results from that the
significance of each node is calculated from the SDN switch
arrangement X and the flow path assignment Y. Due to the
complexity, we present an efficient heuristic solution.

As depicted in Algorithm 1, the intelligence behind the
Algorithm algorithm is to find the most common anterior
nodes in the shortest paths of all flows. This is a three-step
approach detailed as follows.

1) Finding the shortest paths: Algorithm finds the shortest
path(s) for all flows, in which a flow is defined as traffic from
one node a to another node b. We omit flows whose source
and destination nodes are the same. When a flow has multiple
shortest paths, the first one in the calculated shortest paths list
is selected for the flow.

2) Calculating the node significances: After selecting the
shortest paths for flows, each node’s significance is calculated
using (3), which accumulates traffic rates of all flows passing
the node.

3) Iteratively choosing common significant nodes: As shown
in Fig. 6, this step iteratively chooses the most common ante-
rior nodes by recording the occurrences and the significance of
the idx th node in each flow’s selected paths. A set of all idx th

nodes thus is generated. Then, the significant ratio is calculated

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

2064 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Algorithm 1: The Algorithm Algorithm

Input: G = (V ,E): The topology;
Input: M: The traffic matrix.
Output: X : The SDN switch deployment.

1 X = {0, . . . , 0}; P ← ∅; obj =∞; satisfy= 0;
2 for f ∈ F do
3 paths ← shortest_paths_all(G,f);
4 apply_path(G, f, paths[0]);
5 P ← P ∪ paths[0];

6 apply_traffic(G, M);
7 S ←get_node_significance(G);

8 cnt ←
{
v1 : 0, . . . , v|V | : 0

}
;

/* Iteratively select nodes for
deploying SDN switches. */

9 for idx ∈ [1, |V |) do
10 for p ∈ P do
11 v ← p[idx];

/* End-host importance aware with
node sig. ratio. */

12 cnt[v] ← cnt[v] + sv∑
si∈S si

;

13 v ← get_max_count_node(cnt);
14 X ′ ← X ; x ′v ← 1;
15 status←re_apply_paths(G,X ′);
16 apply_traffic(G,M);
17 S ←get_node_significance(G);
18 objnew ← cal_obj_value(G,X ′);
19 if satisfy = 0 then
20 if status = 1 then
21 satisfy ← 1;
22 if !dev_contraints(G,X ′) and

!link_contraints(G,X ′) then
23 satisfy ← 0;
24 continue;

25 cnt.remove(v); X ← X ′;obj ← objnew ;
26 continue;

27 if satisfy = 1 then
28 if objnew ≥ obj then
29 continue;

30 cnt.remove(v); X ← X ′; obj ← objnew ;

31 return X

for each node in the set, and the one with the highest signifi-
cant ratio is chosen to deploy the programmable SDN switch.
This step contains three procedures. i) Variable initialization.
Set the current objective value to obj = ∞, and set the cur-
rent node index to idx = 1. The variable satisfy here is a
flag indicating if there has already been a deployment scheme
satisfies the constraints. ii) Significance calculation. Count the
number of occurrences by accumulating the significances of
the idx th nodes used in the shortest paths of all flows and
deploy a programmable SDN switch at the node with the max-
imum count. iii) Objective calculation. Calculate the objective

Fig. 6. The Algorithm algorithm demonstration. Note that the last node on
each path is not counted on.

value for the deployment as objnew , and compare it with obj.
If objnew < obj , the newly selected node is then deployed
with a programmable SDN switch, and the current node index
moves forward to the next node. The algorithm then goes back
to “Procedure 31”. Otherwise, the algorithm stops. Whenever
a new X is calculated, the corresponding path applied to each
flow is re-arranged because each flow should pass at least one
programmable SDN switch for flow analysis and programma-
bility satisfaction. The path re-arrange procedure is detailed
in Algorithm 2.

In Algorithm 1, Lines 1-7 initialize the network, find the
shortest path(s) for each flow, apply the traffic matrix, and cal-
culate the node significances. The time complexity of this sub-
procedure is O(|F |), which can be represented as O(|V |2).
To jointly consider node occurrences and significance, we
introduce significance ratio.7 Lines 9-30 iteratively calculate
the significance ratio of each node in the idx th occurrences
of each path, in which Lines 10-12 gather the idx th node in
each path and accumulate their node significance. This sub-
procedure has a O(|V ||E |) time complexity, where the path
set can be obtained in linear time complexity O(|E |) [76].
Line 13 finds the node with the max significance “occurrence”
(i.e., significance ratio) that becomes a candidate for deploy-
ing an SDN switch. The time complexity is O(log |V |). Then,
the network adjusts the paths based on the new SDN switch
deployment in Lines 15-17. Whenever a new node is selected
as the candidate, Algorithm first tries to re-assign flow paths,
re-apply traffic, and re-calculate the node significances. A new
objective value is then calculated based on the node candi-
date to compare with the current objective value. If the new
value is smaller than the old one, a programmable SDN switch
is deployed at the candidate. Next, Algorithm keeps testing
each index until the end. The most complex part of this sub-
procedure is the re_apply_paths() function detailed in
Algorithm 2, and its time complexity is O(|F |). Consequently,
the overall time complexity for Algorithm is O(|V |3), which
is polynomial complex.

7The ratio of a node’s significance to the summation of significances of all
nodes (see Line 12 in Algorithm 1).

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: END-HOST-IMPORTANCE-AWARE SECURE SERVICE-ENABLED HYBRID SDN DEPLOYMENT 2065

Algorithm 2: re_apply_paths(G,X)

Input: G = (V ,E): The topology; X: The SDN switch
deployment.

Output: flag: the status of flow programmability
satisfaction.

1 V SDN ← ∅;
/* Get current nodes that deployed with

SDN switches. */
2 for i ∈ |V | do
3 if xi = 1 then
4 V SDN ← V SDN ∪ vi ;

5
−−→
flag ← −→0 ;

6 for f ∈ F do
7 pcur ← get_cur_paths(G,f);
8 pold ← pcur ;
9 if V SDN ∩ pcur �= ∅ then

10 continue;

/* If having more than 5 shortest
paths, we only reserve 5. */

11 Ps ←paths_shortest_5(G,f);
12 for p ∈ Ps \ pcur do
13 if V SDN ∩ p �= ∅ then
14 apply_path(G,f,p);
15 flagf ← 1;
16 break;

17 if (flagf = 0) ∧ p is the last shortest path. then
/* Detour the traffic. */

18 p ← get_cur_paths(G ,f(fsrc→V SDN)) +
get_cur_paths(G ,f(V SDN→fdst)

) flagf ← 1;

19 return
∧

f ∈F flagf ;

Algorithm leverages Algorithm 2 to re-assign paths for
flows. It also follows an iterative approach. Algorithm 2
gets information on the current SDN switch deployment in
Lines 1-4. Then, It retrieves the current path of each flow f
in Lines 5-10. Algorithm 2 tests any shortest paths traverse at
least one programmable SDN switch (Lines 11-18). As shown
in Lines 17-18, if no one satisfies the requirement, Algorithm 2
detours the flow first from the flow’s source node to a near-
est SDN switch node and then from that SDN switch node
to the flow’s destination node. This step can satisfy the flow
programmable constraint on most topologies unless containing
isolated nodes.

VI. SIMULATION

We present the simulation of the EASON problem in this
section. Firstly, we introduce the simulation setup and the
compared algorithms. Then, we show the performance of com-
pared algorithms on various topologies from the real-world
using public trace datasets. Simulation results indicate that
Algorithm can achieve near-optimal performance while it is
scalable on larger topologies.

Fig. 7. The Abilene trace in a week.

Fig. 8. The GÈANT trace fluctuation as of time.

A. Simulation Setup

We employ real-world backbone topologies from Topology
Zoo [77] in our simulation. Topology Zoo provides 262 topolo-
gies with standard gml files. We conduct the simulations using
Python on a Dell PowerEdge R815 server equipped with four
AMD Opteron 6220 @3.00 GHz CPU (8-Core) sockets and
192 GB DRAM. We leverage python-igraph, a popu-
lar Python graph library, to read topologies from gml files
and find paths. In the simulation, each node contains one
switch (or router), and it can be either an SDN device or a
legacy device based on the calculated hybrid SDN deployment
scheme X. For Abilene [74] and GÈANT [78] topologies, we
use real-world trace datasets from [73], [79] to calculate node
significances because traffic trace datasets of other topolo-
gies are not publicly available. We set the link capacities as
the Abilene topology and flow rates as 250 Kbps on other
topologies. State-of-the-art network devices support terabits
per second level packet processing capability, and we thus set
the processing capability of each SDN switch as 1 Tbps.

B. Compared Algorithms

We compare the following algorithms in this paper.
• Optimal: This is the optimal solution of the EASON

problem, which minimizes the propagation of malicious
traffic and overall upgrade cost. We use GUROBI [80] to
solve it.

• Significance n: This solution deploys n SDN switch(es)
at n most significant nodes.

• Algorithm: This is detailed in Algorithm 1.

C. Simulation Results

This subsection shows our simulation results. We first
present the performances of Algorithm, Optimal, and
Significance n on several small topologies (the number of links
is less than ten). Because of the limited public datasets, we
show the stability of the Algorithm algorithm on real-world
traces of the Abilene and GÈANT topologies by comparing it

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

2066 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 9. Performances on different real-world topologies with various sizes.

to Significance n. Our simulation results show that Algorithm
can achieve near-optimal performances on small topologies.
Meanwhile, it spends only three more seconds to stably
reduce malicious traffic propagation to as low as 4% using
less than six SDN switches (see Fig. 11) without compro-
mising the SDN programmability on Abilene. Likewise, it can
achieve a close-to-zero compromised ratio even using less pro-
grammable SDN switches compared to Significance n under
acceptable time duration on GÈANT (see Fig. 12).

1) Performances on Different Small Topologies: We show
the performances of Optimal, Algorithm, and Significance n
algorithms on different real-world topologies whose sizes are
distinct. We employ a popular optimization problem solver,
GUROBI [80], to solve the Optimal algorithm. Due to the
complexity of the EASON problem, we fail to run Optimal on
topologies over 15 nodes or ten links. Our simulation results
show that Algorithm achieves comparable security protec-
tion and cost performances to Optimal using remarkably
reduced execution time on small topologies.

1) Flow-programmable satisfaction ratio: As shown
in Fig. 9a, Algorithm and Optimal can 100% satisfy the
flow-programmable constraint. However, Significance n fails
to guarantee, and the inability can be as high as 40% (i.e.,
Significance 1). By jointly observing the SDN switch usage
from Fig. 9c, we can see that Significance n uses more
SDN switches but fails to guarantee the programmability.
The reason is that the flow programmability constraint is

preferentially ensured, and the most secure deployment with a
minimal cost is then considered. Significance n’s inability to
flow-programmable satisfaction is because it merely deploys
a single programmable SDN switch at the most significant
node(s) without guaranteeing programmability constraint.

2) Ratio of compromised node significances: We define
the ratio of compromised node significances as the ratio of
all compromised nodes’ significances to all nodes’ signifi-
cances. We leverage this metric to describe how well a network
can benefit from deployments from the security perspec-
tive. Fig. 9b shows that Algorithm achieves the identical value
to that of Optimal on small topologies. Besides, Algorithm can
outperform the Significance n algorithm when using the same
number of programmable SDN switches (e.g., when topol-
ogy size is 16, 18, 22, 23, 24, 27, 30), which indicates the
inability of the pure node-based approach (i.e., the signifi-
cance n algorithm). Conversely, the path-traversal approach
employed by Algorithm mitigates the attack traversal across
the whole network. Algorithm can only achieve an identical
security performance on smaller topologies (i.e., topology size
is less than 15) using the same number of programmable SDN
switches. This is because smaller topologies have limited paths
to adjust. Unfortunately, the compromised ratio achieved by
the optimal solution on the 4-node topology approaches 30%.
The reason is that compromising a single node can signifi-
cantly fluctuate the performance due to the limited nodes on
this topology.

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: END-HOST-IMPORTANCE-AWARE SECURE SERVICE-ENABLED HYBRID SDN DEPLOYMENT 2067

Fig. 10. The Padi topology.

3) Number of SDN switches: As depicted in Fig. 9c, when
the topology is small, the number of SDN switches used by
Algorithm is the same as that of Optimal in 80% of the
cases. As the topology size increases, the number of instances
needed by Algorithm increases, but the compromised node
significances ratio is still under 10%. However, up to 60% of
the network nodes can be compromised using the Significance
n algorithm with even more SDN switches.

4) Execution time: Optimal is a non-polynomial solution,
whereas Algorithm and Significance n are polynomial-time
solutions. Hence, in Fig. 9d, we can observe an exponential-
like increase in the time usage of Optimal, while Algorithm
and Significance n use much fewer times (see the bottom
subfigure of Fig. 9d). To demonstrate the differences between
Algorithm and Significance n, we also convert the linear-scale
plot (the top subplot of Fig. 9d) to the log-scale [81] plot (the
bottom subplot of Fig. 9d) as the numbers are so close in the
linear scale plot. The weird phenomenon in the figure is that
the execution time is close to 5 when the topology size is
15. We find this topology is Padi [82], and it contains isolated
nodes without degrees (see Fig. 10). Hence, the execution time
of Padi is equivalent to a seven-node topology.

2) Performance on Real-World Traces: In this subsection,
we show the performances of Algorithm and Significance
n on the Abilene topology [74] and GÈANT topology [78]
as it was in 2005 using the public real-world traffic
traces [73], [79]. The Abilene topology consists of 12 nodes
and 14 links (see Fig. 5), and GÈANT contains 23 nodes and
37 links. Unfortunately, we fail to run Optimal under both
topologies on our testbed due to the NP-hard complexity. We
show algorithms’ performance over time to indicate that the
Algorithm is efficient at all times, which can stably outperform
others rather than take the lead on selected occasions.

1) Flow-programmable satisfaction ratio: As shown
in Fig. 11a, Algorithm satisfies the programmable con-
straint for all flows on all tested traces. While Significance
1 fails on approximately 15% of tested traffic traces under
the Abilene topology. Although 98.5% of the satisfaction is
achieved on these traces, the hybrid SDN requires each flow
to pass an SDN switch for programmability and malicious
analysis. Therefore, Significance 1 is insufficient in protect-
ing the network, but when the number of programmable SDN
switches is greater than two, Significance n can solve this
problem on this topology. On the GÈANT topology, we set
n ∈ [10, 14] for fairness as the number of SDN switches used
by Algorithm ranges from 11 to 14. Fig. 12a demonstrates the
full satisfaction achieved by Algorithm, where all Significant
n algorithms fail to comply with the flow programmable con-
straint. Meanwhile, Algorithm can use fewer SDN switches
compared to Significance n. On some traces, Algorithm may

require more SDN switches, as depicted in Fig. 12c, to satisfy
the constraint, and we detail the reason in Section VI-C2(3).

2) Ratio of compromised node significances: Fig. 11b shows
the ratio of compromised node significances of Algorithm and
Significance n. Algorithm can intercept malicious traffic as
early as it propagates 4% of a flow’s nodes and can achieve
an average of about 10%. However, Significance n allows
malicious traffic traverse through an average of 34% of flow
significances before intercepting the traffic and impacts over
1
3 of the network. Besides, from both Fig. 11b and Fig. 11c,
when using the same number of SDN switches, say four
switches, Algorithm can notably outperform Significance 4 for
over 30%. As illustrated in Fig. 12b, Algorithm remarkably
reduces the ratio of compromised significances compared to
the Significant n algorithm that is close to 0. However, even the
best case of Significance n still compromises approximately
6% of the total network significance. This again proves the
“security nature” of Algorithm.

3) Number of SDN switches: Fig. 11c shows the number
of SDN switches used by both algorithms. We can observe a
fluctuation in the number of SDN switches used by Algorithm.
This fluctuation results from the traffic pattern, as shown
in Fig. 7. Significance n uses n SDN switch(es) to deploy
in the Hybrid SDN network, while Algorithm does not require
more SDN switches for the flow-programmable constraint.
As shown in Figs. 11(c)-11(b), Algorithm can use fewer SDN
switches to achieve better security performance, and it employs
less than six (50% of all nodes) SDN switches in all traffic
traces to satisfy the programmable requirement. Moreover, in
about 60% of the test traces, Algorithm only needs four
SDN switches. Fig. 12c indicates Algorithm uses fewer SDN
switches on most traces and uses an identical number of
SDN switches on 15% all traces of GÈANT. But as we have
mentioned in satisfy the constraint, and we de Sec VI-C2(2),
Algorithm can satisfy the flow programmable constraint,
whereas Significant n fails to. The reason that some traces
may use more SDN switches results from the heavy traffic, as
depicted in Fig. 8.

4) Execution time: Algorithm employs an iterative approach
by selecting nodes in the order of their significance and test-
ing their availability to deploy programmable SDN switch(es).
Conversely, Significance n only chooses n most significant
nodes for deploying programmable SDN switches. Hence,
the time needed by Significance n is shorter. Our simulation
results indicate that Algorithm only needs two seconds on the
Abilene topology and approximately 13s on the GÈANT topol-
ogy, as depicted in Fig. 11d and Fig. 12d. Since Algorithm is
not designed for online deployment purposes, we believe the
time usages for Algorithm are acceptable.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the End-host-
importance-Aware secure service-enabled hybrid Sdn deplOy-
meNt (EASON) problem. It explores methods of efficiently
intercepting malicious traffic and reduces risks using a
minimum deployment expense. We have proved the NP-
hardness complexity of the EASON problem. Due to the

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

2068 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 11. Performances on the Abilene topology using real-world traces.

Fig. 12. Performances on the GÈANT topology using real-world traces.

complexity, we have proposed an efficient heuristic algorithm
called Algorithm. Algorithm retrieves the node significance
information from topologies along with their traces and pref-
erentially places SDN switches at the most common anterior
nodes. Simulation results indicate that Algorithm can achieve
comparable performance to the optimal solution on small
topologies and is scalable on larger topologies. Our next step is
implementing real-world security services (e.g., network mea-
surement functions for statistics, IDS, IPS) on resource-scarce
programmable switches to validate the efficiency of Algorithm
on real-world systems. New data structures will be put forth
in realizing hardware constraints. We present Algorithm to
inspire the use of programmable switches in the hybrid SDN.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their valu-
able comments, which have significantly improved their paper.

REFERENCES

[1] B. A. Forouzan, Cryptography & Network Security. London, U.K.:
McGraw-Hill, 2007.

[2] B. Zimmer, “LISA: A practical zero trust architecture,” in Proc. Enigma,
Jan. 2018, pp. 1–24.

[3] “Huawei NetEngine AR6000 series enterprise routers datasheet.”
Huawei Technologies Co., Ltd. 2022. [Online]. Available:
https://e.huawei.com/en/material/networking/b17b2a7b964d452b
8c44bc889e0d077c

[4] “Router security.” Cisco Systems, Inc. 2022. [Online]. Available: http:
//www.topology-zoo.org/maps/Abilene.jpg

[5] S. Choi et al., “FBOSS: Building switch software at scale,” in Proc.
Conf. ACM Spec. Interest Group Data Commun., New York, NY, USA,
2018, pp. 342–356.

[6] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[7] H. Mekky, F. Hao, S. Mukherjee, T. V. Lakshman, and Z.-L. Zhang,
“Network function virtualization enablement within SDN data plane,”
in Proc. IEEE INFOCOM Conf. Comput. Commun., 2017, pp. 1–9.

[8] S. Pontarelli et al., “FlowBlaze: Stateful packet processing in hard-
ware,” in Proc. 16th USENIX Symp. Netw. Syst. Des. Implement. (NSDI),
Feb. 2019, pp. 531–548.

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: END-HOST-IMPORTANCE-AWARE SECURE SERVICE-ENABLED HYBRID SDN DEPLOYMENT 2069

[9] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The programmable
data plane: Abstractions, architectures, algorithms, and applications,”
ACM Comput. Surv., vol. 54, no. 4, pp. 1–36, 2021.

[10] L. Fawcett, S. Scott-Hayward, M. Broadbent, A. Wright, and N. Race,
“Tennison: A distributed SDN framework for scalable network security,”
IEEE J. Sel. Areas Commun., vol. 36, no. 12, pp. 2805–2818, Dec. 2018.

[11] P. Vörös and A. Kiss, “Security middleware programming using P4,”
in Proc. Int. Conf. Human Aspects Inf. Security Privacy Trust, 2016,
pp. 277–287.

[12] B. Lewis, M. Broadbent, and N. Race, “P4ID: P4 enhanced intru-
sion detection,” in Proc. IEEE Conf. Netw. Funct. Virtualization Softw.
Defined Netw. (NFV-SDN), 2019, pp. 1–4.

[13] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. SIGCOMM Conf., 2018, pp. 561–575.

[14] J. Sonchack, D. Loehr, J. Rexford, and D. Walker, “Lucid: A language
for control in the data plane,” in Proc. ACM SIGCOMM Conf., 2021,
pp. 731–747.

[15] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” in Proc. ACM SIGCOMM Conf. SIGCOMM, New York, NY, USA,
2013, pp. 3–14.

[16] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann,
“Panopticon: Reaping the benefits of incremental SDN deployment in
enterprise networks,” in Proc. USENIX Annu. Tech. Conf. (USENIX
ATC), Philadelphia, PA, USA, Jun. 2014, pp. 333–345.

[17] H. Lu, N. Arora, H. Zhang, C. Lumezanu, J. Rhee, and G. Jiang,
“HybNET: Network manager for a hybrid network infrastructure,” in
Proc. Ind. Track 13th ACM/IFIP/USENIX Int. Middlew. Conf., 2013,
pp. 1–6.

[18] M. Markovitch and S. Schmid, “SHEAR: A highly available and flex-
ible network architecture marrying distributed and logically centralized
control planes,” in Proc. IEEE 23rd Int. Conf. Netw. Protocols (ICNP),
2015, pp. 78–89.

[19] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, “Incremental deploy-
ment of SDN in hybrid enterprise and ISP networks,” in Proc. Symp.
SDN Res., 2016, pp. 1–7.

[20] C. Jin, C. Lumezanu, Q. Xu, Z.-L. Zhang, and G. Jiang, “Telekinesis:
Controlling legacy switch routing with OpenFlow in hybrid networks,”
in Proc. 1st ACM SIGCOMM Symp. Softw. Defined Netw. Res., 2015,
pp. 1–7.

[21] C. Jin, C. Lumezanu, Q. Xu, H. Mekky, Z.-L. Zhang, and G. Jiang,
“Magneto: Unified fine-grained path control in legacy and OpenFlow
hybrid networks,” in Proc. SOSR, 2017, pp. 75–87.

[22] W. Feng, Z.-L. Zhang, C. Liu, and J. Chen, “Clé: Enhancing security
with programmable dataplane enabled hybrid SDN,” in Proc. 15th Int.
Conf. Emerg. Netw. Exp. Technol., 2019, pp. 76–77.

[23] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[24] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
stateful layer-4 load balancing fast and cheap using switching ASICs,”
in Proc. Conf. ACM Special Interest Group Data Commun., 2017,
pp. 15–28.

[25] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“SNAP: Stateful network-wide abstractions for packet processing,” in
Proc. ACM SIGCOMM Conf., 2016, pp. 29–43.

[26] N. Foster et al., “Frenetic: A network programming language,” ACM
SIGPLAN Notices, vol. 46, no. 9, pp. 279–291, 2011.

[27] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN programming with pyretic,” in Proc. USENIX, Berkeley, CA, USA,
2013, pp. 40–47.

[28] Sandhya, Y. Sinha, K. Haribabu, “A survey: Hybrid SDN,” J. Netw.
Comput. Appl., vol. 100, pp. 35–55, Dec. 2017.

[29] X. Huang, S. Cheng, K. Cao, P. Cong, T. Wei, and S. Hu, “A sur-
vey of deployment solutions and optimization strategies for hybrid SDN
networks,” IEEE Commun. Surveys Tuts., vol. 21, no. 2, pp. 1483–1507,
2nd Quart., 2019.

[30] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN networks: A survey
of existing approaches,” IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3259–3306, 4th Quart., 2018.

[31] S. Khorsandroo, A. G. Sánchez, A. S. Tosun, J. M. Arco, and
R. Doriguzzi-Corin, “Hybrid SDN evolution: A comprehensive sur-
vey of the state-of-the-art,” Comput. Netw., vol. 192, Jun. 2021,
Art. no. 107981.

[32] E. Rojas, R. Amin, C. Guerrero, M. Savi, and A. Rastegarnia,
“Challenges and solutions for hybrid SDN,” Comput. Netw., vol. 195,
Aug. 2021, Art. no. 108198.

[33] K. Poularakis, Q. Qin, K. M. Marcus, K. S. Chan, K. K. Leung, and
L. Tassiulas, “Hybrid SDN control in mobile ad hoc networks,” in Proc.
IEEE Int. Conf. Smart Comput. (SMARTCOMP), 2019, pp. 110–114.

[34] P. Shi, S. Rivera, L. Pike, Z. Fei, J. Griffioen, and K. Calvert, “Enabling
shared control and trust in hybrid SDN/legacy networks,” in Proc. 28th
Int. Conf. Comput. Commun. Netw. (ICCCN), 2019, pp. 1–9.

[35] T. Feng and J. Bi, “OpenRouteFlow: Enable legacy router as a software-
defined routing service for hybrid SDN,” in Proc. 24th Int. Conf.
Comput. Commun. Netw. (ICCCN), 2015, pp. 1–8.

[36] M. Caria, A. Jukan, and M. Hoffmann, “SDN partitioning: A central-
ized control plane for distributed routing protocols,” IEEE Trans. Netw.
Service Manag., vol. 13, no. 3, pp. 381–393, Sep. 2016.

[37] Z. Guo, S. Dou, Y. Wang, S. Liu, W. Feng, and Y. Xu, “HybridFlow:
Achieving load balancing in software-defined WANs with scalable rout-
ing,” IEEE Trans. Commun., vol. 69, no. 8, pp. 5255–5268, Aug. 2021.

[38] T. Y. Cheng and X. Jia, “Compressive traffic monitoring in hybrid SDN,”
IEEE J. Sel. Areas Commun., vol. 36, no. 12, pp. 2731–2743, Dec. 2018.

[39] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, “CFR-RL: Traffic
engineering with reinforcement learning in SDN,” IEEE J. Sel. Areas
Commun., vol. 38, no. 10, pp. 2249–2259, Oct. 2020.

[40] J. Galán-Jiménez, M. Polverini, and A. Cianfrani, “A scalable and
error-tolerant solution for traffic matrix assessment in hybrid IP/SDN
networks,” IEEE Trans. Netw. Service Manag., vol. 17, no. 1,
pp. 251–264, Mar. 2020.

[41] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” IEEE Commun.
Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[42] S. Palkar et al., “E2: A framework for NFV applications,” in Proc. 25th
Symp. Oper. Syst. Principles, 2015, pp. 121–136.

[43] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“NetBricks: Taking the V out of NFV,” in Proc. 12th USENIX Symp.
Oper. Syst. Des. Implement. (OSDI), 2016, pp. 203–216.

[44] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. Maguire, Jr.,
“Metron: NFV service chains at the true speed of the underlying hard-
ware,” in Proc. 15th USENIX Symp. Netw. Syst. Des. Implement. (NSDI),
2018, pp. 171–186.

[45] T. Barbette, G. P. Katsikas, G. Q. Maguire, Jr., and D. Kostić, “RSS++:
Load and state-aware receive side scaling,” in Proc. 15th Int. Conf.
Emerg. Netw. Exp. Technol., 2019, pp. 318–333.

[46] K. Zhang, D. Zhuo, and A. Krishnamurthy, “Gallium: Automated soft-
ware middlebox offloading to programmable switches,” in Proc. Annu.
Conf. ACM Special Interest Group Data Commun. Appl. Technol. Archit.
Protocols Comput. Commun., 2020, pp. 283–295.

[47] A. A. Pranata, T. S. Jun, and D. S. Kim, “Overhead reduction scheme for
SDN-based data center networks,” Comput. Stand. Interfaces, vol. 63,
pp. 1–15, Mar. 2019.

[48] R. Bifulco and G. Rétvári, “A survey on the programmable data plane:
Abstractions, architectures, and open problems,” in Proc. IEEE 19th Int.
Conf. High Perform. Switch. Routing (HPSR), 2018, pp. 1–7.

[49] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95,
Jul. 2014.

[50] X. Jin et al., “NetCache: Balancing key-value stores with fast in-network
caching,” in Proc. 26th Symp. Oper. Syst. Principles, 2017, pp. 121–136.

[51] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable load balancing using programmable data planes,” in Proc.
Symp. SDN Res., 2016, pp. 1–12.

[52] J. McCauley, A. Panda, A. Krishnamurthy, and S. Shenker, “Thoughts
on load distribution and the role of programmable switches,” ACM
SIGCOMM Comput. Commun. Rev., vol. 49, no. 1, pp. 18–23, 2019.

[53] L. Chen, G. Chen, J. Lingys, and K. Chen, “Programmable switch as a
parallel computing device,” 2018, arXiv:1803.01491.

[54] J. Lim, S. Nam, J.-H. Yoo, and J. W.-K. Hong, “Load balancing algo-
rithm with programmable switch,” in Proc. 21st Asia–Pacific Netw. Oper.
Manag. Symp. (APNOMS), 2020, pp. 326–329.

[55] D. Kim et al., “TEA: Enabling state-intensive network functions on pro-
grammable switches,” in Proc. Annu. Conf. ACM Spec. Interest Group
Data Commun. Appl. Technol. Archit. Protocols Comput. Commun.,
2020, pp. 90–106.

[56] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,”
in Proc. Conf. ACM Spec. Interest Group Data Commun., 2018,
pp. 357–371.

[57] R. B. Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and
M. Mitzenmacher, “PINT: Probabilistic in-band network telemetry,” in
Proc. Annu. Conf. ACM Spec. Interest Group Data Commun. Appl.
Technol. Archit. Protocols Comput. Commun., 2020, pp. 662–680.

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

2070 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

[58] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from Googles network
infrastructure,” in Proc. ACM SIGCOMM Conf., 2016, pp. 58–72.

[59] A. Singh et al., “Jupiter rising: A decade of Clos topologies and central-
ized control in Google’s datacenter network,” ACM SIGCOMM Comput.
Commun. Rev., vol. 45, no. 4, pp. 183–197, 2015.

[60] A. AlSabeh, E. Kfoury, J. Crichigno, and E. Bou-Harb, “P4DDPI:
Securing P4-programmable data plane networks via DNS deep packet
inspection,” in Proc. Netw. Distrib. Syst. Security (NDSS) Symp., 2022,
pp. 1–7.

[61] L. Tang, Q. Huang, and P. P. C. Lee, “SpreadSketch: Toward invert-
ible and network-wide detection of superspreaders,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., 2020, pp. 1608–1617.

[62] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.
Symp. SDN Res., 2017, pp. 164–176.

[63] X. Zhang, L. Cui, F. P. Tso, and W. Jia, “pHeavy: Predicting heavy flows
in the programmable data plane,” IEEE Trans. Netw. Service Manag.,
vol. 18, no. 4, pp. 4353–4364, Dec. 2021.

[64] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,
“ShieldBox: Secure middleboxes using shielded execution,” in Proc.
Symp. SDN Res., 2018, pp. 1–14.

[65] R. N. Smith and S. Bhattacharya, “Firewall placement in a large network
topology,” in Proc. 6th IEEE Comput. Soc. Workshop Future Trends
Distrib. Comput. Syst., 1997, pp. 40–45.

[66] S. Lee, M. Purohit, and B. Saha, “Firewall placement in cloud data
centers,” in Proc. 4th Annu. Symp. Cloud Comput., 2013, pp. 1–2.

[67] M. Bouet, J. Leguay, T. Combe, and V. Conan, “Cost-based placement
of vDPI functions in NFV infrastructures,” Int. J. Netw. Manag., vol. 25,
no. 6, pp. 490–506, 2015.

[68] M. L. Artz, “NetSPA: A network security planning architecture,”
Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst.
Technol., Cambridge, MA, USA, 2002.

[69] Q. Lv, J. Zhu, F. Zhou, and Z. Zhu, “Network planning with bilevel
optimization to address attacks to physical infrastructure of SDN,” in
Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1–6.

[70] Z. Guo, W. Feng, S. Liu, W. Jiang, Y. Xu, and Z.-L. Zhang, “RetroFlow:
Maintaining control resiliency and flow programmability for software-
defined WANs,” in Proc. Int. Symp. Qual. Service (IWQoS), Phoenix,
AZ, USA, Jun. 2019, pp. 1–10.

[71] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram,
and D. Zamboni, “Analysis of a denial of service attack on TCP,” in
Proc. IEEE Symp. Security Privacy, 1997, pp. 208–223.

[72] H. Wang, D. Zhang, and K. G. Shin, “Detecting SYN flooding attacks,”
in Proc. 21st Annu. Joint Conf. IEEE Comput. Commun. Soc., vol. 3,
2002, pp. 1530–1539.

[73] Y. Zhang. “Abilene traffic matrix.” 2022. [Online]. Available: http:
//www.cs.utexas.edu/\simyzhang/research/AbileneTM

[74] “Abilene network topology.” Topology Zoo. 2022. [Online]. Available:
https://www.cisco.com/c/en/us/products/security/router-security/index.
html

[75] N. Alon, B. Awerbuch, and Y. Azar, “The online set cover problem,” in
Proc. 35th Annu. ACM Symp. Theory Comput., 2003, pp. 100–105.

[76] M. Thorup, “Undirected single-source shortest paths with positive inte-
ger weights in linear time,” J. ACM, vol. 46, no. 3, pp. 362–394,
1999.

[77] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[78] “GÉANT looking glass.” GÉANT. 2022. [Online]. Available: https://lg.
geant.org

[79] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing pub-
lic intradomain traffic matrices to the research community,” ACM
SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 83–86, 2006.

[80] “Gurobi optimizer.” Gurobi. 2022. [Online]. Available: http://www.
gurobi.com

[81] “Pyplot scales.” Matplotlib. 2022. [Online]. Available: https://matplotlib.
org/3.1.3/gallery/pyplots/pyplot_scales.html

[82] “Padi2 network diagram.” Internet2. 2022. [Online]. Available: http://
web.archive.org/web/20081206174517

Wendi Feng (Member, IEEE) received the Ph.D.
degree from Beijing University of Posts and
Telecommunications advised by Prof. J. Chen. He
was co-advised by Prof. Z.-L. Zhang with the
University of Minnesota—Twin Cities from 2018 to
2020. He is currently a Faculty Member with the
School of Computer Science, Beijing Information
Science and Technology University. His research
interests include computer networks, service com-
puting, software-defined networks, and network
function virtualization.

Chuanchang Liu is currently an Associate
Professor with the State Key Laboratory of
Networking and Switching Technology, Beijing
University of Posts and Telecommunications. His
current research interests include mobile device
security, cloud computing, and service-oriented
computing.

Bo Cheng (Member, IEEE) is currently a Professor
and the Vice Director of the State Key Laboratory
of Networking and Switching Technology, Beijing
University of Posts and Telecommunications. His
current research interests include mobile device
security, cloud computing, Internet of Things and
big data analysis, network service, and intelligence.

Junliang Chen is currently a Professor and the
Academic Leader with the State Key Laboratory
of Networking and Switching Technology, Beijing
University of Posts and Telecommunications. His
current research interests include service-oriented
computing and service generation system. He is a
member of the Chinese Academy of Science and
the Chinese Academy of Engineering, and a Fellow
of the China Computer Federation.

Zhiguo Wan (Member, IEEE) received the
B.S. degree in computer science from Tsinghua
University, Beijing, China, in 2002, and the Ph.D.
degree in information security from the National
University of Singapore in 2007. He was a
Postdoctoral Fellow with the Katholieke University
of Leuven, Belgium, and an Assistant Professor with
the School of Software, Tsinghua University. He is a
Principal Investigator with Zhejiang Lab, Hangzhou,
Zhejiang, China. His main research interests include
security and privacy for cloud computing, Internet
of Things, and blockchain.

Authorized licensed use limited to: Beijing Information Science & Tech Univ. Downloaded on July 01,2023 at 04:19:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

